Average, Marginal Business and Economics Functions

Marginal Cost - The rate of change of the cost of producing x items: $C^{\prime}(x)$
Average Cost - The average cost of each item among x items: $\overline{\mathrm{C}}(\mathrm{x})=\frac{\mathrm{C}(\mathrm{x})}{\mathrm{x}}$
Marginal Average Cost - The rate of change of the average cost of each item among x items: $\overline{\mathrm{C}}^{\prime}(\mathrm{x})$

Example: Bill owns a small business for selling pizza. The cost of producing x pizzas is given by the function $C(x)=.5 x^{2}-4 x+8$
a) Find the approximate cost of producing the $11^{\text {th }}$ pizza:
i) Find $C^{\prime}(x)=\mathbf{0 . 1 x}-\mathbf{4}$
ii) Find $C^{\prime}(10)=10-4=\$ 6=$ The approximate cost of producing the $11^{\text {th }}$ pizza.
b) Find the average cost per pizza for producing 20 pizzas:
i) Find $\overline{\mathrm{C}}(\mathrm{x})=\frac{\mathrm{C}(\mathrm{x})}{\mathrm{x}}=\frac{0.5 \mathrm{x}^{2}}{\mathrm{x}}-\frac{4 \mathrm{x}}{\mathrm{x}}+\frac{8}{\mathrm{x}}=\mathbf{0 . 5 x}-\mathbf{4}+\frac{8}{\mathrm{x}}$
ii) Find $\overline{\mathrm{C}}(20)=0.5(20)-4+\frac{8}{20}=10-4+0.4=\$ \mathbf{6 . 4 0}=$ The average cost per pizza for producing 20 pizzas.
c) Find the average cost of producing the $12^{\text {th }}$ pizza:
i) Find $\bar{C}^{\prime}(x)=0.5-\frac{8}{x^{2}}$
ii) Find $\overline{\mathrm{C}}^{\prime}(11)=0.5-\frac{8}{11^{2}}=0.5-\frac{8}{121}=0.5-.066=\$ 0.43=$ The average cost per pizza for producing the 12 pizza.

Marginal Revenue - The rate of change for the revenue for producing x items: $R^{\prime}(x)$
Average Revenue - The average revenue of each item from among x items: $\bar{R}(x)=\frac{R(x)}{x}$
Marginal Average Revenue - The rate of change of the average revenue of each item among x items:

$$
\overline{\mathrm{R}}^{\prime}(\mathrm{x})
$$

Example: Bill owns a small business for selling pizza. The revenue for producing x pizzas is given by the function $R(x)=-.2 x^{2}+2 x$
a) Find the approximate revenue for producing the $8^{\text {th }}$ pizza:
i) Find $R^{\prime}(x)=-\mathbf{0} \cdot \mathbf{4 x}+\mathbf{2}$
ii) Find $\mathrm{R}^{\prime}(7)=-0.4(7)+2=-\$ \mathbf{0 . 8 0}=$ The approximate revenue for producing the $11^{\text {th }}$ pizza.
b) Find the average revenue per pizza for producing 8 pizzas:
i) Find $\overline{\mathrm{R}}(\mathrm{x})=\frac{\mathrm{R}(\mathrm{x})}{\mathrm{x}}=\frac{-0.2 \mathrm{x}^{2}}{\mathrm{x}}+\frac{2 \mathrm{x}}{\mathrm{x}}=-\mathbf{0 . 2} \mathbf{x}+\mathbf{2}$
ii) Find $\overline{\mathrm{R}}(8)=-0.2(8)+2=-1.60+2=\$ \mathbf{0} .4 \mathbf{0}=$ The average revenue per pizza for producing 8 pizzas.
c) Find the average revenue for producing the $8^{\text {th }}$ pizza:
i) Find $\bar{R}^{\prime}(x)=\mathbf{- 0 . 2}$
ii) Find $\overline{\mathrm{R}}^{\prime}(7)=\mathbf{-} \mathbf{0 . 2 0}=$ The average revenue per pizza for producing the $8^{\text {th }}$ pizza.

Marginal Profit - The rate of change for the profit for producing x items: $P^{\prime}(x)$
Average Profit - The average profit of each item from among x items: $\bar{P}(x)=\frac{P(x)}{x}$
Marginal Average Profit - The rate of change of the average profit of each item among x items:

$$
\overline{\mathrm{P}}^{\prime}(\mathrm{x})
$$

Example: Bill owns a small business for selling pizza. The revenue for producing x pizzas is given by the function $P(x)=-.7 x^{2}+6 x-8$
a) Find the approximate profit for producing the $4^{\text {th }}$ pizza:
i) Find $P^{\prime}(x)=-1 \cdot 4 x+6$
ii) Find $P^{\prime}(3)=-1.4(3)+6=\$ \mathbf{1 . 8 0}=$ The approximate profit for producing the $4^{\text {th }}$ pizza.
b) Find the average profit per pizza for producing 4 pizzas:
i) Find $\overline{\mathrm{P}}(\mathrm{x})=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}}=\frac{-0.7 \mathrm{x}^{2}}{\mathrm{x}}+\frac{6 \mathrm{x}}{\mathrm{x}}-\frac{8}{x}=-\mathbf{0 . 7 x}+6-\frac{8}{x}$
ii) Find $\overline{\mathrm{P}}(4)=-0.7(4)+6-\frac{8}{4}=-2.8+6-2=\$ \mathbf{1 . 2 0}=$ The average profit per pizza for producing 4 pizzas.
c) Find the average profit per pizza for producing the $6^{\text {th }}$ pizza:
i) Find $\bar{P}^{\prime}(x)=-0.7-\frac{8}{x^{2}}$
ii) Find $\overline{\mathrm{P}}^{\prime}(5)=-0.7-\frac{8}{5^{2}}=-0.7-\frac{8}{25}=-0.7-0.32=-\$ \mathbf{1 . 0 2}=$ The average profit per pizza for producing the $6^{\text {th }}$ pizza.

Practice Problems:

John owns a small business selling High Definition Televisions. His Cost, Revenue and Profit functions are given by the following:
$R(x)=-0.05 x^{2}+250 x \quad C(x)=125,000+35 x \quad P(x)=-0.05 x^{2}+215 x-125,000$
a) Find the cost of producing the $1001^{\text {th }} \mathrm{TV}$.
b) Find the average cost per TV for producing 1000 TVs.
c) Find the average cost per TV for producing the $1001^{\text {th }}$ TV.
d) Find the revenue for producing the $1001^{\text {th }} \mathrm{TV}$.
e) Find the average revenue per TV for producing 1000 TVs.
f) Find the average revenue per TV for producing the $1001^{\text {th }} \mathrm{TV}$.
g) Find the profit for producing the $1001^{\text {th }} \mathrm{TV}$.
h) Find the average profit per TV for producing 1000 TVs.
i) Find the average profit per TV for producing the $1001^{\text {th }} \mathrm{TV}$.

Answer Key:
a) $\$ 35$
b) $\$ 160$
c) $\$.035$
d) $\$ 150.10$
e) $\$ 200$
f) $\$ 0.15$
g) $\$ 115.10$
h) $\$ 40$
i) $\$.115$

