Graphing with Calculus

The Graphing Steps:

1. Find domain of $f(x)$.
2. Find the first derivative of $f(x)$.
3. Find partition points (critical values and undefined values) as follows:
a. Set the first derivative of $f(x)=0$ to find critical values.
b. Set the denominator of the first derivative of $f(x)=0$ to find undefined points.
4. Use either First or Second Derivative Test to determine local maxima \& minima (extrema). Set the second derivative of $f(x)=0$ to find critical values. Plot extrema.
5. Find other points to sketch the graph, including: (a) intercepts; (b) inflection points (second derivative sign changes) (c) asymptotes (see reverse side); (d) concavity and (e) maximum/minimum values.

Problem 1. Use the first derivative test to sketch the graph of $f(x)=\frac{x^{2}}{x^{2}-1}$.

1. Find the domain. Set the denominator of $f(x)$ equal to zero, the domain is: $x \neq 1$ and $x \neq-1$.
2. Find the first derivative of $f(x)$. $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}$
3. Critical Values:
a. Set the first derivative $=0$ (top of $f(x)=0$). This yields $x=0$. Thus 0 is a critical value.
b. Set the denominator of $f(x)=0$. This yields $x=1$ and $x=-1$. Thus, both are critical values and will give vertical asymptotes on the graph.
4. Local Extrema: Use the first derivative test.
a. Make a sign chart using partition values. On the chart, use a test point in $f^{\prime}(x)$ on each interval between partition numbers. This is a good time to use the table function (set to ask) on the calculator.
i. If $f^{\prime}(x)>0$, write + on the sign chart, this is where $f(x)$ is increasing.
ii. If $f^{\prime}(x)<0$, write - on the sign chart, this is where $f(x)$ is decreasing.
iii. If the sign changes from (-) to (+) you have a local minimum
iv. If the sign changes from $(+)$ to $(-)$ you have a local maximum
b. This would give us the following sign chart:

5. Now it is time to sketch our function. Since $\lim _{x \rightarrow \pm \infty} f(x)=1$, the line $y=1$ is a horizontal asymptote. We have two vertical asymptotes from step \#3. Plotting other points as necessary completes the graph.

x	$f(x)$
-3	$9 / 8$
$9 / 10$	$-81 / 19$
0	0
4	$-81 / 19$
2	$4 / 3$
3	$9 / 8$

Problem \#2. Use the second derivative test to graph $f(x)=x^{3}-6 x^{2}$, on the interval [$\left.-3,5\right]$, and find the absolute extrema.

1. Determine the domain. In this case $(-\infty, \infty)$ since we don't have a fraction with domain limits.
2. Calculate the first derivative: $f^{\prime}(x)=3 x^{2}-12 x$.
3. Critical Values: Set $f^{\prime}(x)=0$, this yields $\mathrm{x}=0$ and 4 . Thus, these are the critical values. Since this is not a function with a limited domain, there are no undefined points or vertical asymptotes.
4. Relative Extrema: Use the second derivative test. $f^{\prime \prime}(x)=6 x-12$. Find $f^{\prime \prime}(0)$ and $f^{\prime \prime}(4)$.
a. Since $f^{\prime \prime}(0)=-12<0, f(0)$ is a local maximum.
b. Since $f^{\prime \prime}(4)=12>0, f(4)$ is a local minimum.
5. Concavity/ Inflection Points: Setting $f^{\prime \prime}(x)=0$ yields $x=2$, so $f(x)$ has an inflection point at $(2,-16)$ and the graph changes concavity at $x=2$.
a. Since $f^{\prime \prime}(x)<0$ on $(-\infty, 2)$, this part of the graph is concave down.
b. Since $f^{\prime \prime}(x)>0$ on $(2, \infty)$, this part of the graph is concave up.
6. Absolute Extrema: We know that $f(0)$ is a local maximum and that $f(0)=0$ and $f(4)$ is a local minimum and $f(4)=-32$, so now we need to check the endpoints. $f(-3)=-81$ and $f(5)=-25$.
a. $\quad f(0)=0$ which is the largest value so it is an absolute maximum.
b. $\quad f(-3)=-81$ which is the smallest so it is an absolute minimum.
7. Now it is time to sketch the graph. Using the critical values you can get a good idea of what the function looks like. This graph would not have any vertical or horizontal asymptotes.

Second Derivative Test

A. Find $f^{\prime \prime}(x)$.	$f^{\prime \prime}(\mathrm{CV})>0$	$f^{\prime \prime}(\mathrm{CV})<0$
B. Check all CV 's:		
(i) if $f^{\prime \prime}(\mathrm{CV})>0$, then $f(\mathrm{CV})$ is a local minimum		
(ii) if $f^{\prime \prime}(\mathrm{CV})<0$, then $f(\mathrm{CV})$ is a local maximum	(local min./concave	(local max./concave
(iii) if $f^{\prime \prime}(\mathrm{CV})=0$, then test fails (use First Derivative	up)	down)
Test)		

Notes on Asvmptotes:

1. The line $x=c$ is a vertical asvmptote of the graph of $f(x)=\frac{p(x)}{q(x)}$ if $q(c)=0$ and $p(c) \neq 0$.
2. The line $y=\lim _{x \rightarrow+\infty} f(x)=b$ is a horizontal asymptote of $f(x)$ if b is a constant.

If $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are both polynomials, and if $p(x)$ and $q(x)$ have the same degree, then the graph of $f(x)$ has a horizontal asymptote.
3. The line $y=a x+b$ is an oblique asvmptote of the graph of $f(x)$ if $\lim _{x \rightarrow+\infty}(f(x)-y)=0$. If $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are both polynomials, and if the degree of $p(x)$ is one more than the degree of $q(x)$, then the graph of $f(x)$ has an oblique asymptote. The equation of this asymptote is $y=Q(x)=a x+b$, where $Q(x)$ is the quotient obtained by dividing the denominator of $f(x)$ into the numerator and excluding the remainder.

