Linear approximation of a function value at a given point.

Steps

1. Find the derivative and substitute the given x value to find $f^{\prime}(a)$.
2. Substitute the given x value to the original equation to find $f(a)$.
3. Use the equation $y=f(a)+f^{\prime}(a)(x-a)$.

Example 1

Use the equation $f(x)=\sqrt{x}$ at $x=4$ to approximate $\sqrt{3.9}$.
Step 1) Find the derivative and substitute the given x value to find $f^{\prime}(a)$.

$$
\begin{array}{ll}
f(x)=\sqrt{x} & \text { Original equation } \\
f(x)=x^{1 / 2} & \text { Write in exponential form. } \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} & \text { Use the power rule } \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} & \text { Rewrite in radical form. } \\
f^{\prime}(4)=\frac{1}{2 \sqrt{4}} & \text { Substitute } x \text { value and solve } \\
f^{\prime}(4)=\frac{1}{4} & \text { Find } f^{\prime}(a)
\end{array}
$$

Step 2) Substitute the given x value to the original equation to find $f(a)$.

$$
\begin{array}{ll}
f(x)=\sqrt{x} & \text { Original equation } \\
f(4)=\sqrt{4} & \text { Substitute } x \text { value and solve } \\
f(4)=2 & \text { Find } f(a)
\end{array}
$$

Step 3) Use the equation $y=f(a)+f^{\prime}(a)(x-a)$ where $f(a)$ is the y value of the original equation $(2), f^{\prime}(a)$ is the y value of the derivative $\left(\frac{1}{4}\right), x$ is the value you want to approximate (3.9), and a is the value you are using to approximate (4).

$$
\begin{gathered}
y=f(a)+f^{\prime}(a)(x-a) \\
y=2+\frac{1}{4}(3.9-4) \\
y=1.975
\end{gathered}
$$

Comparing this with the decimal approximation the calculator gives, it is pretty close.

$$
\sqrt{3.9} \approx 1.9748417
$$

Example 2

Use the equation $f(x)=\tan (x)$ where $x=\frac{\pi}{4}$ to approximate $\tan (0.8)$.
Step 1) Find the derivative and substitute the given x value to find $f^{\prime}(a)$.

$$
\begin{array}{ll}
f(x)=\tan (x) & \text { Original equation } \\
f^{\prime}(x)=\sec ^{2}(x) & \text { Take derivative } \\
f^{\prime}(x)=\sec ^{2}\left(\frac{\pi}{4}\right) & \text { Substitute } x \text { value and solve } \\
f^{\prime}(x)=2 & \text { Find } f^{\prime}(a)
\end{array}
$$

Step 2) Substitute the given x value to the original equation to find $f(a)$.

$$
\begin{array}{ll}
f(x)=\tan (x) & \\
\text { Original equation } \\
f\left(\frac{\pi}{4}\right)=\tan \left(\frac{\pi}{4}\right) & \\
f\left(\frac{\pi}{4}\right)=1 & \\
\text { Substitute } x \text { value and solve } \\
\text { Find } f(a)
\end{array}
$$

Step 3) Use the equation $y=f(a)+f^{\prime}(a)(x-a)$ where $f(a)$ is the y value of the original equation $(1), f^{\prime}(a)$ is the y value of the derivative (2), x is the value you want to approximate (0.8), and a is the value you are using to approximate $\left(\frac{\pi}{4}\right)$.

$$
\begin{gathered}
y=f(a)+f^{\prime}(a)(x-a) \\
y=1+2\left(0.8-\frac{\pi}{4}\right) \\
y \approx 1.029204
\end{gathered}
$$

Comparing this with the decimal approximation the calculator gives, it is pretty close.

$$
\tan (0.8) \approx 1.0296356
$$

Now You Try

1) Use the equation $f(x)=\sqrt[3]{x}$ at $x=64$ to approximate $\sqrt[3]{60}$.
2) Use the equation $f(x)=\frac{1}{x^{2}}$ at $x=5$ to approximate $\frac{1}{24}$.
3) Use the equation $f(x)=\sin (x)$ at $x=\pi$ to approximate \sin (3).
Answers: 1) $3.91 \overline{6}$
4) 0.041616328
5) 0.141592653
