Linear approximation of a function value at a given point.

Steps

- 1. Find the derivative and substitute the given x value to find f'(a).
- 2. Substitute the given x value to the original equation to find f(a).
- 3. Use the equation y = f(a) + f'(a)(x a).

Example 1

Use the equation $f(x) = \sqrt{x}$ at x = 4 to approximate $\sqrt{3.9}$.

Step 1) Find the derivative and substitute the given x value to find f'(a).

$f(x) = \sqrt{x}$	Original equation
$f(x) = x^{1/2}$	Write in exponential form.
$f'(x) = \frac{1}{2}x^{-1/2}$	Use the power rule
$f'(x) = \frac{1}{2\sqrt{x}}$	Rewrite in radical form.
$f'(4) = \frac{1}{2\sqrt{4}}$	Substitute x value and solve
$f'(4) = \frac{1}{4}$	Find $f'(a)$

Step 2) Substitute the given x value to the original equation to find f(a).

$f(x) = \sqrt{x}$	Original equation
$f(4) = \sqrt{4}$	Substitute <i>x</i> value and solve
f(4) = 2	Find $f(a)$

Step 3) Use the equation y = f(a) + f'(a)(x - a) where f(a) is the y value of the original equation (2), f'(a) is the y value of the derivative $(\frac{1}{4})$, x is the value you want to approximate (3.9), and a is the value you are using to approximate (4).

$$y = f(a) + f'(a)(x - a)$$
$$y = 2 + \frac{1}{4}(3.9 - 4)$$
$$y = 1.975$$

Comparing this with the decimal approximation the calculator gives, it is pretty close.

$$\sqrt{3.9} \approx 1.9748417$$

Example 2

Use the equation $f(x) = \tan(x)$ where $x = \frac{\pi}{4}$ to approximate $\tan(0.8)$.

Step 1) Find the derivative and substitute the given x value to find f'(a).

 $f(x) = \tan(x)$ Original equation $f'(x) = sec^2(x)$ Take derivative $f'(x) = sec^2(\frac{\pi}{4})$ Substitute x value and solvef'(x) = 2Find f'(a)

Step 2) Substitute the given x value to the original equation to find f(a).

$f(x) = \tan\left(x\right)$	Original equation
$f\left(\frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right)$	Substitute x value and solve
$f\left(\frac{\pi}{4}\right) = 1$	Find $f(a)$

Step 3) Use the equation y = f(a) + f'(a)(x - a) where f(a) is the y value of the original equation (1), f'(a) is the y value of the derivative (2), x is the value you want to approximate (0.8), and a is the value you are using to approximate $(\frac{\pi}{4})$.

$$y = f(a) + f'(a)(x - a)$$
$$y = 1 + 2(0.8 - \frac{\pi}{4})$$
$$y \approx 1.029204$$

Comparing this with the decimal approximation the calculator gives, it is pretty close.

 $\tan(0.8) \approx 1.0296356$

Now You Try

- 1) Use the equation $f(x) = \sqrt[3]{x}$ at x = 64 to approximate $\sqrt[3]{60}$.
- 2) Use the equation $f(x) = \frac{1}{x^2}$ at x = 5 to approximate $\frac{1}{24}$.
- 3) Use the equation $f(x) = \sin(x)$ at $x = \pi$ to approximate $\sin(3)$.

Answers: 1) 3.916 2) 0.041616328 3) 0.141592653