The Delta-Epsilon Way

Introduction to Limits/Closeness

The Concept - A number L is called the limit of a function f(x) as the value of x approaches some constant \mathbf{c} when the following condition is true: if for every positive number ϵ (*epsilon*), there exists an associated positive number δ (*delta*) such that if the distance between \mathbf{c} and x is less than \mathbf{d} , then the distance between the number L and f(x) is less than \mathbf{e} . In other words,

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$

(See diagram below.)

Example #1

The Problem:

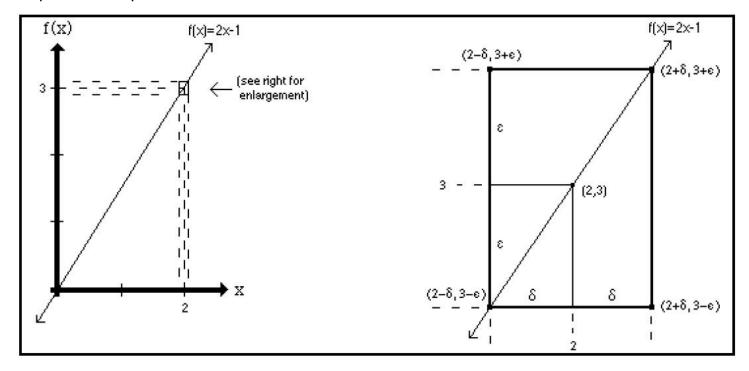
Verify the existence of the following limit.

$$\lim_{x \to 2} (2x - 1) = 3$$

The Procedure:

Given ε , find a δ given that f(x) = 2x - 1, c = 2, and L = 3. Use $|f(x) - L| < \varepsilon$ (which means: $L - \varepsilon < f(x) < L + \varepsilon$, see diagram below) to find a δ . (Note: δ is usually written as an expression in terms of ε .)

Graphical Interpretation:



The Math:

Need to show that: for every ε there exists a δ such that

$$|f(x) - 3| < \varepsilon$$
 whenever (what is given)

$$0 < |x-2| < \delta$$
 (need to verify)

The Proof:

$$|f(x) - L| < \varepsilon$$

Hint #1: substitute for f(x) and L.

$$|(2x-1)-3|<\varepsilon$$

<u>Hint #2</u>: manipulate |f(x) - L| (using algebra)

$$|2x-4|<\varepsilon$$

so that it looks like $|x-c| < \delta$.

$$|2(x-2)| < \varepsilon$$

$$2 \cdot |x - 2| < \varepsilon$$

$$|x-2| < \frac{\varepsilon}{2}$$

Now let
$$\delta = \frac{\varepsilon}{2}$$
.

$$|x-2| < \delta$$

<u>Hint #3:</u> We must finally obtain the form $|x-2| < \delta$.

Example #2

The Problem: Verify the existence of the following limit.

$$\lim_{x \to 2} \left(\frac{6x^2 + x - 2}{3x + 2} \right)$$

<u>The Procedure</u>: Always *factor* the numerator and denominator to see if any cancellations occur.

The Solution:

$$\lim_{x \to 2} \left(\frac{6x^2 + x - 2}{3x + 2} \right)$$

$$= \lim_{x \to 2} \left(\frac{(3x+2)(2x-1)}{3x+2} \right)$$

Hint: cancel factors.

$$= \lim_{x \to 2} (2x - 1)$$

Example #3

The Problem:

Given that
$$f(x) = x^2 + x - 7$$
, verify that $\lim_{x \to 3} f(x) = 5$.

The Procedure:

Given
$$|f(x) - 5| < \varepsilon$$
 find a δ such that $0 < |x - 3| < \delta$.

The Proof:

$$\underline{\text{step } \#1}: \qquad |f(x) - L| < \varepsilon$$

Hint #1: substitute for f(x) and L.

step #2:
$$|(x^2 + x - 7) - 5| < \varepsilon$$

$$\underline{\text{step } #3}: \qquad |x^2 + x - 12| < \varepsilon$$

$$\underline{\text{step } \#4}: \qquad |x+4| \cdot |x-3| < \varepsilon$$

Since $x \to 3$ in our problem, we can assume that x is close to 3. So, since x is in the vicinity of 3, assume that $|x - 3| \le 1$ (i.e., the distance between x and 3 is less than or equal to 1). This is done for convenience and is sometimes called a preliminary assumption.

step #5:
$$|x-3| \le 1$$

step #6:
$$-1 \le x - 3 \le 1$$

Hint #2: isolate x by adding 3 to all parts.

step #7:
$$2 \le x \le 4$$

So, 2 and 4 are the extreme values for x. Now, choose the extreme value that will make |x + 4| the *largest*. This is done in order to make the quantity $\frac{\mathcal{E}}{|x+4|}$ the *smallest*. So, |2+4|=6 or |4+4|=8; we pick x=4 since 8>6.

step #8:
$$|x+4| \cdot |x-3| < \varepsilon$$
 (from step #4)

step #9:
$$|4+4| \cdot |x-3| < \varepsilon$$

$$\underline{\text{step } #10}: \qquad (8) \cdot |x-3| < \varepsilon$$

$$\underline{\text{step } #11}: \qquad |x-3| < \frac{\varepsilon}{8}$$

In step #5 it was assumed that $|x-3| \le 1$, and in step #11 the result was $|x-3| < \frac{\varepsilon}{8}$. To ensure that $|x-3| < \delta$ implies that $|f(x)-5| < \varepsilon$, we need δ to be the *minimum* of 1 and $\frac{\varepsilon}{8}$, i.e., δ is *smaller* of 1 and $\frac{\varepsilon}{8}$. So, let $\delta = \min(1, \frac{\varepsilon}{8})$.