Composite Functions - Practice (and solutions)

For the given functions f and g, find (answer on the back)
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

1. $f(x)=2 x+3, \quad g(x)=3 x$
2. $f(x)=\sqrt{x}, \quad g(x)=x^{2}$
3. $f(x)=\frac{x+1}{x-1}, \quad g(x)=\frac{x-1}{x+1}$
4. $f(x)=x+\frac{1}{x}, \quad g(x)=x^{2}$

For each of the following problems, show that $(f \circ g)(x)=(g \circ f)(x)=x$.

1. $f(x)=2 x, \quad g(x)=\frac{1}{2} x$
2. $f(x)=a x+b, \quad g(x)=\frac{1}{a}(x-b), \quad a \neq 0$
3. $f(x)=\frac{1}{x}, \quad g(x)=\frac{1}{x}$
4. $f(x)=\frac{2 x+1}{x-1}, \quad g(x)=\frac{x+1}{x-2}$

Answers

1 a) $f(g(x))=2(3 x)+3=6 x+3 \quad$ 2 a) $f(g(x))=\sqrt{\left(x^{2}\right)}=x$
b) $g(f(x))=3(2 x+3)=6 x+9$
b) $g(f(x))=(\sqrt{x})^{2}=x$
c) $f(f(x))=2(2 x+3)+3=4 x+9$
c) $f(f(x))=\sqrt{\sqrt{x}}=\sqrt[4]{x}$
d) $g(g(x))=3(3 x)=9 x$
d) $g(g(x))=\left(x^{2}\right)^{2}=x^{4}$

3 a) $f(g(x))=\frac{\left(\frac{x-1}{x+1}\right)+1}{\left(\frac{x-1}{x+1}\right)-1}=-x$
b) $g(f(x))=\frac{\left(\frac{x+1}{x-1}\right)-1}{\left(\frac{x+1}{x-1}\right)+1}=\frac{1}{x}$
c) $f(f(x))=\frac{\left(\frac{x+1}{x-1}\right)+1}{\left(\frac{x+1}{x-1}\right)-1}=x$
d) $g(g(x))=\frac{\left(\frac{x-1}{x+1}\right)-1}{\left(\frac{x-1}{x+1}\right)+1}=-\frac{1}{x}$

4 a) $\quad f(g(x))=\left(x^{2}\right)+\frac{1}{\left(x^{2}\right)}=\frac{x^{4}+1}{x^{2}}$
b) $g(f(x))=\left(x+\frac{1}{x}\right)^{2}=\frac{x^{4}+2 x^{2}+1}{x^{2}}$
c) $f(f(x))=\left(x+\frac{1}{x}\right)+\frac{1}{\left(x+\frac{1}{x}\right)}=\frac{x^{4}+3 x^{2}+1}{x^{3}+x}$
d) $g(g(x))=\left(x^{2}\right)^{2}=x^{4}$

