Finding \mathbf{x} and y Intercepts

The x-intercept is the point at which a graph crosses the x-axis. As the y value is zero anywhere along the x-axis, the x-intercept is an ordered pair of numbers where the y value is always zero. The points $(-3,0),(1,0),(4,0)$ are all examples of points on the x-axis.

The y-intercept is the point at which a graph crosses the y-axis. As the x value is zero anywhere along the y-axis, the y-intercept is an ordered pair of numbers where the x value is always zero. The points $(0,1),(0,-1)$, and $(0,2)$ are all examples of points on the y-axis.

It is possible to graph the equation of a line by finding the x - and y-intercepts.
EXAMPLE: We will graph the equation $3 x+2 y=12$ by finding the x - and y-intercepts.

1. To find the x-intercept, let $y=0$ and solve for x.

$$
\begin{gathered}
3 x+=2 y 12 \\
3 x+2(0) 1=2 \\
3 x=12 x= \\
4
\end{gathered}
$$

The x-intercept is the ordered pair $(4,0)$.
3. Graph the ordered pairs and draw the line.

EXAMPLE: Find the x - and y-intercepts of $y=2 x+6$ and graph.

1. Find the x-intercept. (y will be 0)

$$
\begin{aligned}
y & =+2 x 6 \\
0 & =+2 x 6 \\
- & =62 x \\
- & =3 x
\end{aligned}
$$

2. Find the y-intercept. (x will be 0)

$$
\begin{aligned}
& y=2 x+6 \\
& y=2(0)+ \\
& 6 y=6
\end{aligned}
$$

The y-intercept is $(0,6)$. The
x-intercept is $(-3,0)$.
3. Graph the intercepts and draw the line.

EXAMPLE: Find the x - and y-intercepts of $3 x+4 y=0$ and graph.

1. Find the x-intercept $(\operatorname{set} y=0)$
2. Find the y-intercept $($ set $x=0)$

$$
\begin{array}{rl}
3 x+=4 y 0 \\
3 x+4(0)= \\
0 & 3 x \\
& =0 x \\
& =0
\end{array}
$$

The x-intercept is $(0,0)$.

$$
\begin{array}{r}
3 x+=4 y 0 \\
3(0)+=4 y 0 \\
4 y=0 y=0
\end{array}
$$

The y-intercept is $(0,0)$.

NOTE that the x - and y-intercept are both at the point $(0,0)$. This means that the line goes through the origin. We will need to find another point in order to graph. Pick a value for x and solve for y.

Let's see what happens if we let $x=4$ after writing the equation in the $y=m x+b$ form. (See handout \#43)

Solve for y :

$$
\begin{equation*}
3 x+=4 y \tag{4}
\end{equation*}
$$

Now let $x=4$:
$03 y=-$

$$
\begin{aligned}
& 4 y=-+3 x 0 \quad 44 y-3 x \quad y=-3 \\
& -=- \\
& 4 \quad-\quad
\end{aligned}
$$

$$
y=-\quad \frac{3}{4} x
$$

The point $(4,-3)$ is a solution of $3 x+4 y=0$
3. Graph the x - and y-intercept and the point $(4,-3)$, and then draw the line.

EXERCISES: Find the x - and y-intercepts of the following equations and graph the line of each equation.
$\begin{array}{lll}\text { a. } y=2 x+8 & \text { b. } y=5 x+10 & \text { c. } x-3 y=6 \text { d. } 3 x-4 y=12\end{array}$ e. $2 x-4 y=8$ f. $2 x+3 y=0$
KEY: a. $\quad x$-intercept: $(-4,0)$
y-intercept: $(0,8)$

c. x-intercept: $(6,0) y$ intercept: $(0,-2)$
y
b. $\quad x$-intercept: $(-2,0)$
y-intercept: $(0,10)$

d. x-intercept: $(4,0)$
y-intercept: (0 ,
-3)
y
e. x-intercept: $(4,0) y$ intercept: $(0,-2)$

f. $\quad x$-intercept: $(0,0) \quad$ You will need another point y-intercept: $(0,0) \quad$ to complete the graph.

