Graphing Quadratics - Practice (and solutions)

The graph of a quadratic function, $f(x)=a x^{2}+b x+c$, is a parabola: 1 .
The axis of symmetry is the line

$$
x=\frac{-b}{2 a}
$$

2. The vertex lies on the axis of symmetry. The y-coordinate of the vertex is

$$
f\left(\frac{-b}{2 a}\right)
$$

3. If $a>0$ the parabola opens upward. I

$$
a<0 \mathrm{f} \quad \text { the }
$$ parabola opens downward.

4. The x-intercept(s), if any, are found by setting $\mathrm{f}(\mathrm{x})=0$, and solving $a x^{2}+b x+c=0$
5. To find the y-intercept, set $x=0$ and solve for y.
6. If the parabola opens upward, then the y-value at the vertex is a minimum value.

If the parabola opens downward, then the y-value at the vertex is a maximum value.

For each function, find the axis of symmetry, vertex, y-intercept, and xintercept(s), if any. Determine the domain and range for the function. State whether the function has a relative maximum or minimum, and state the value of the max or min. Sketch the graph of the equation.

1. $f(x)=x^{2}-6 x+7$
2. $y=x^{2}-6 x+5$
3. $g(x)=3 x^{2}+2$
4. $y=x^{2}+6 x-5$
5. $h(t)=-t^{2}-4 t+12$
6. $k(x)=4 x-6+2 x^{2}$
7. $f(x)=-2 x^{2}+7 x-5$
8. $f(x)=3 x^{2}+2 x+2$
9. $s(t)=-16 t^{2}+48 t+8$
10. $f(x)=x^{2}+2 x-8$
11. $f(x)=-x^{2}+6 x-8$
12. $f(x)=6+2 x-x^{2}$
13. $f(x)=-2 x^{2}+x+1$
