Logarithmic Equations - Practice (and solutions)

Logarithmic equations can sometimes be solved by exploiting the one to one property of logarithmic functions. That is this $=$ that which can be used with $\operatorname{logs} \log ($ this $)=\log$ (that).

For example, if $\log _{4} x=\log _{4} 5$ then $x=5$.
Solve each of the following equations involving logarithmic functions. Note you may first have to apply other properties of logarithms.

1. $\log _{3}(3 x-2)=2$
2. $\log _{5}\left(x^{2}+x+4\right)=2$
3. $\log _{4} x+\log _{4}(x-3)=1$
4. $2 \log _{3}(4+x)-\log _{3} 9=2$
5. $2 \log _{5} x=3 \log _{5} 4$
6. $\frac{1}{2} \log _{3} x=2 \log _{3} 2$
7. $\log _{3}(x-1)^{2}=2$
8. $\log _{x} 4=2$
9. $\log _{2}(3 x+2)-\log _{4} x=3$ (Hint: Use the change-of-base formula)
10. $\log _{a}(x-1)-\log _{a}(x+6)=\log _{a}(x-2)-\log _{a}(x+3)$

Answers:

1) $x=\frac{11}{3}$
2) $x=8$
3) $x=\frac{26 \pm 8 \sqrt{10}}{9}$
4) $x=\frac{-1 \pm \sqrt{85}}{2}$
5) $\begin{gathered}x=2 \\ \text { 7) } x=-2,4\end{gathered}$
6) $x=2$
