MAC 1105 Solving Quadratic Equations by Completing the Square

Quadratic Equation - Any equation which can be written in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
Completing the Square - Solving a Quadratic Equation by creating a Polynomial which can be factored as a Perfect Square Trinomial.

Example: Solve $x^{2}+2 x-8=0$ by Completing the Square.
a b c
Step 1: Move c to the opposite side of the equation.

$$
x^{2}+2 x-8=0 \rightarrow x^{2}+2 x=8
$$

$$
+8+8
$$

b $\quad 2$
Step 2: Add () to each side of the equation. $\mathbf{b}=\mathbf{2}$

2
$\begin{aligned} & (\mathrm{b})^{2}=\left(\begin{array}{l}2^{2} \\ 2\end{array}{ }_{2}^{2}=1\right.\end{aligned}{ }^{2}=1 \quad \rightarrow x^{2}+2 x+\mathbf{1}=8+\mathbf{1} \rightarrow \mathbf{x}^{2}+\mathbf{2 x}+\mathbf{1}=\mathbf{9}$

Step 3: Factor $x^{2}+2 x+1$ as a Perfect Square Trinomial. (Remember $\sqrt{ }$ and squares are inverses.) $x^{2}+$
$2 x+1=9$
$(x+1)(x+1)=9$
$(x+1)^{2}=9$
Step 4: Square Root both sides of the equation.
$\sqrt{(x+1)^{2}}= \pm \sqrt{9} \rightarrow \mathbf{x}+\mathbf{1}= \pm \mathbf{3}$

Step 5: Solve for \mathbf{x}.
$x+1=3$

$$
x+1=-3
$$

$-1-1$
$-1 \quad-1$
$x=2$
$x=-4$

Example: Solve $2 x^{2}-5 x-3=0$ by Completing the Square.
Step 1: Use Algebra to move c to the opposite side of the equation.
$2 x^{2}-5 x-3=0 \rightarrow 2 x^{2}-5 x=3$

$$
+3+3
$$

Step 2: Divide both sides of the equation by a. (You want the leading coefficient to be 1.)
$-\quad \frac{5}{2} \quad \frac{3}{2} 2 \quad{ }^{2}-x=$ 2
b 2
Step 3: Add () to each side of the equation.
$\left({ }^{\mathrm{b}}\right)^{2}=\left({ }^{52}\right)_{2}^{-}=\left({ }^{5}\right)^{2}={ }^{25} \quad \rightarrow \quad \mathrm{X}^{2}-{ }^{5}-\mathrm{x}+\frac{25}{16} \quad \frac{3}{2} \quad \frac{25}{16} \quad=\quad-+\quad-\quad \rightarrow \mathbf{x}^{2}-{ }^{5} \mathbf{x}+$ $25=49$
$\begin{array}{llll}2 & 2 & 4 & 16\end{array}$

Step 4: Factor $\mathrm{x}^{2}{ }_{5}^{5} \mathrm{x} \quad \frac{25}{16}+$ as a Perfect Square Trinomial.
$\left.\mathrm{x}^{2}-{ }^{5}{ }_{-} \mathrm{x} \underset{24}{\frac{25}{16}}+=(\mathrm{x}-)^{5}\right)^{2} \rightarrow\left(\mathrm{x}-\mathrm{s}^{5}\right)^{2}={ }_{4}^{49}-$

Step 5: Square Root both sides of the equation.

Step 6: Solve for \mathbf{x}.
$x-\frac{5}{4}=\frac{7}{4} \quad x-\frac{5}{4}=\frac{-7}{4}$
$+\frac{5}{4}+\frac{5}{4} \quad+\frac{5}{4}+\frac{5}{4}$
$x=3$

$$
x=-{ }_{2}^{1}
$$

Practice Problems:
Solve the following Quadratic Equations by Completing the Square:

1) $x^{2}+4 x-21=0$

Solution: $\mathrm{x}=3,-7$
2) $x^{2}-12 x=-20$ Solution: $x=2$, 103) $3 x^{2}-5 x+2=0$ Solution: $x=2,1$

3
4) $4 x^{2}+19 x=-12$

Solution: $\mathrm{x}=-{ }^{\mathbf{3}}, \mathbf{- 4}$
4

