Piecewise Functions (Values and Graphs)

Piecewise functions occur when different parts of the domain are governed by different rules, or sub-functions. Similar to a piecewise functions, we have different rules for different parts of our lives, such as before and after learning to drive.

Example

Here is an example of a piecewise function:

$$F(x) = \begin{cases} 2x+1 & \text{if } x < -1 \\ -2 & \text{if } -1 \le x \le 3 \\ -3x+7 & \text{if } x > 3 \end{cases}$$

We can determine values for F(x), or y, we would get if we are given a specific x.

- 1. F(-3) = 2(-3) + 1 = -6 + 1 = -5 hint: use sub-function 1 since -3 is included in that domain
- 2. F(0) = -2 F(5) = -3(5) + 7 = -15 + 7 = -84. F(3) = -2hint: use sub-function 2 since 0 is included in that domain hint: use sub-function 3 since 5 is included in that domain

Note: Watch which sub-function's domain actually has the equal bar, this means that it will include that value not just get really close.

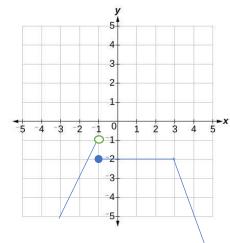
You Try:

- 1. F(-5)
- 2. *F*(−1)
- 3. *F*(7)

Graphing:

Another important skill is to be able to graph a piecewise function. You will use the tools that you learned previously when graphing a linear function.

The domain can be indicated when graphing by using arrows, open circles and closed circles.


> or < use an open circle	> or < use a closed circle	$-\infty \ or + \infty$ use an arrow

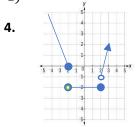
Let's graph the piecewise function from the example. Pick two points for each rule, usually endpoints unless they extend towards infinity.

1)
$$F(x) = 2x + 1$$
 if $x < -1$, this domain begins at $-\infty$ and stops $at - 1$, so we can pick $x = -1$ and any other x in this domain, let's try -2.

x	F(x) = y	endpoint	Note: you
-2	-3	Go to the point and extend the line to show that it goes until $x = -\infty$	can also use the slope-
-1	-1		intercept method

2) F(x) = -2 if $-1 \le x \le 3$. use the endpoints.

x	F(x) = y	endpoint	
3	-2	Use a closed circle for both endpoints since we have <	3) $F(x) = -3x + 7$ if $x > 3$, this domain begins at $x = 3$ and ends at $+\infty$, pick any other point in the domain.
-1	-2	Use a closed circle for both endpoints since we have <u><</u>	<i>Note:</i> you can also use the slope-intercept method.
x	F(x) = y	endpoint	
3	-2	Would use an open circle but it overlaps with the previous line.	
5	-8	use an arrow at the end of the line since it will extend until $+\infty$.	


You Try:

4. Graph:	-2x-4	if $x \leq -2$
$F(x) = \langle$	-2	$if - 2 < x \leq 2$
	3x - 7	if x > 2

You Try Answers:

- **1.** F(-5) = 2(5) + 1 = -9, use sub-function 1; **2**. F(-1)
- **3**. F(7) = -3(7) + 7 = -14, use sub-function 3;

