Simplifying Expressions with Fractional Exponents

Review the rules for exponents and the steps adding, subtracting, and multiplying fractions.

Exponent Rules

a) $\left(x^{m}\right)\left(x^{n}\right)=x^{m+n}$
b) $\frac{x^{m}}{x^{n}}=x^{m-n}$
e) x^{-n}
$=\frac{1}{x^{n}}$
c) $\left(x^{m}\right)^{n}=x^{m n}$
d) $(x y)^{m}=x^{m} y^{m}$
g) $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$
f) $\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$

Steps for Adding or Subtracting Fractions

1 First find the Least Common Denominator

$$
\frac{2}{3}+\frac{1}{7}
$$

Least common Denominator=21
2. Rewrite the fractions with the same denominator.

$$
\frac{14}{21}+\frac{3}{21}
$$

3. Add or subtract the numerators $\frac{17}{21}$

Steps for Multiplying Fractions

Case 1: Multiply numerator and multiply denominators.

$$
\frac{3}{8} \cdot \frac{4}{9}=\frac{12}{72}=\frac{1}{6}
$$

Case 2: If possible "cross cancel" before multiplying.
1
$\frac{3}{8} \cdot \frac{4}{9}=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$
2
3
Example: Simplify the following expression using rational fractional exponents.

$$
\left(\frac{25 x^{2 / 3} y^{3}}{x^{-1 / 4} y^{1 / 3}}\right)^{1 / 2}
$$

Solution: see exponent rules on the first page. These exponent rules are referred to in the steps below
$\left(\frac{25 x^{2 / 3} y^{3}}{x^{-1 / 4} y^{1 / 3}}\right)^{1 / 2}$
$\left(\frac{25 \mathrm{x}^{2 / 3} \mathrm{x}^{1 / 4} \mathrm{y}^{3}}{\mathrm{y}^{1 / 3}}\right)^{1 / 2}(E R e) \quad \frac{1}{\mathrm{x}^{-1 / 4}}=\mathrm{x}^{1 / 4}$
$\left(\frac{25 \mathrm{x}^{11 / 12} \mathrm{y}^{3}}{\mathrm{y}^{1 / 3}}\right)_{(\text {ERa })}^{1 / 2} \quad \frac{2}{3}+\frac{1}{4}=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$
$\left(\frac{25 x^{11 / 12} \mathrm{y}^{8 / 3}}{1}\right)^{1 / 2} \underset{(E R b)}{\frac{3}{1}-\frac{1}{3}=\frac{9}{3}-\frac{1}{3}=\frac{8}{3}}$
$(25)^{1 / 2}\left(x^{11 / 12}\right)^{1 / 2}\left(y^{8 / 3}\right)^{1 / 2}($ ER $)$

$$
25^{1 / 2} \mathrm{x}^{11 / 24} \mathrm{y}^{4 / 3} \quad \frac{11}{12} \cdot \frac{1}{2}=\frac{11}{24}
$$

4

$$
\frac{8}{3} \cdot \frac{1}{2 Z}=\frac{4}{3} \cdot \frac{1}{1}=\frac{4}{3}
$$

$$
5 \mathrm{x}^{11 / 24} \mathrm{y}^{4 / 3}(E R g)
$$

$$
25^{1 / 2}=\sqrt[2]{25}=5
$$

