Slope-Intercept Form and Point-Slope Form

Slope of the line	$m = \underline{rise} = \underline{y_2} - \underline{y_1} run$
	x_2-x_1
Slope-Intercept Form	y = +mx b m is slope; b is y-intercept
Point-Slope Form	$y m x x = (-+_1) y_1 \text{ or } y y - =_1 m x x (1)$
Slope of parallel lines	$m m_1 = 2$ (slopes are the same)
Slope of perpendicular lines	$mm_{12} = -1$ (slopes are opposite & reciprocal)
Equations of Horizontal and Vertical Lines	$y \ b = $ horizontal line $x \ a = $ vertical line, where $a \& b$ are constants

Example (1): Write the slope - intercept equation of a line which passes through (0,-7) whose slope is 2.

Solution:

Slope-intercept equation is $y = +mx \ b$. What we need to complete this equation are slope () m & y-intercept (0,b), and the problem provides both information.

$$m=2$$
 and $b=-7$ The equation of the line is $y = -2.7x$

*y*1

Example (2): Write the slope-intercept equation of a line which passes through (0,4) and x_2, y_2

$$(3,-5).$$

Solution:

Slope-intercept equation is y = +mx b. What we need to complete this equation are slope () m & y-intercept (0,b), however, we only have y-intercept.

$$m = \underline{y_2} - \underline{y_1} = -5 = -3$$

$$x_2 - x_1 \qquad 30 - 3$$

$$m=-3$$
 and $b=4$ The equation of the line is $y=-+3.4x$

 x_1, y_1

Example (3): Write the slope-intercept equation of a line which passes through (-1,4) whose slope is 5.

Solution:

Slope-intercept equation is y = +mx b. What we need to complete this equation are <u>slope</u> () m & y-intercept (0,b), however, we only have <u>slope</u>. Here there are two ways to find the equation of the line.

Method I We will substitute m and $(x y_1, 1)$ in the form y = +mx b to solve for b.

$$m=5$$
, $(x y_1, 1)=(-1,4)$ $4 = -+5(1) b$
=> $b=9$ The

equation of the line is y = +5.9x

Method II Since we are given slope m and an ordered pair $(x y_1, y_1, y_1)$, we can use Point-slope form to find equation of the line.

Point-slope form is $y \, m \, x \, x = (-+_1) \, y_1 \, y = 5(x - - + (1)) \, 4 \, m = 5, (x \, y_1, - + (1)) \, 4$

 $_1$)= $(-1,4) => y^= 5(x^{+} + 1)^4$ Simplify the parenthesis

=> y = + + 5 5 4x Distribute 5

into parenthesis

$$=> y = +5.9x$$

 x_1, y_1

Example (4): Write the slope-intercept equation of a line which passes through (1,3) and x_2, y_2 (-5, 1).

Solution:

Slope-intercept equation is $y = +mx \ b$. What we need to complete this equation are <u>slope</u> () m & y-intercept (0,b). However, we are given two ordered pairs $(x \ y_1, \ 1)$ and $(x \ y_2, \ 2)$ without slope and yintercept. Therefore, we need to find the slope first. Then we can use the two methods discussed on Example (3) to find the equation of the line.

$$(x y_1, 1)$$
 $(x y_2, 2)$

To find the slope between two ordered pairs, (1,3) and (-5, 1) $m = \frac{y_2 - y_1}{x_2 - x_1 - 51 - 63}$

Method I Now we have slope, we will substitute m and $(x y_1, y_1)$ in the form y = +mx b to solve for b.

$$m = \frac{2}{3}$$
, $(x y_1, 1) = (1,3)$ $3 = \frac{2}{3}()1 + b$
=> $b = \frac{7}{3}$

The equation of the line is $y = \frac{2}{3x + 3} + \frac{7}{3}$

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is $y m x x = (-+1) y_1$ y = 2(x - +13) $\frac{2}{3} m = (x y_1, 1) = (1,3)$ = y = 3x - 2 = y = 3x - 2into parenthesis

$$\Rightarrow y = \frac{2}{3x - + 3} + \frac{2}{3} = \frac{9}{3}$$
 Combine like term
$$\Rightarrow y = \frac{2}{3x + 3}$$

Example (5): Write the slope-intercept equation of a line which is parallel to $y = -4 \ 2x$, passing through (1,3).

 x_1, y_1 **Solution:**

Slope-intercept equation is y = +mx b. What we need to complete this equation are slope () m & y-intercept (0,b). Since the line we're looking for is parallel to y = -4 2x, their slopes are the same, m=4.

Method I We will substitute m and $(x y_1, y_1)$ in the form y = +mx b to solve for b.

$$m=4$$
, $(x y_1, 1)=(1,3)$ $3 = 41()+b => b=-1$

The equation of the line is y = -4.1x

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is $y \, m \, x \, x = (-+_1) \, y_1 \, y = 4(x_- + 1) \, 3$

$$m=4$$
, $(x y_1, y_1)=(1,3)$ => $y=-+443x$ Distribute 4 into parenthesis

 \Rightarrow y = -4.1x Combine like term

Example (6): Write the slope-intercept equation of a line which is perpendicular to $\frac{1}{2} x^1, y^1$

$$y = -x + 4$$
, passing through (-3,5).

Solution:

Slope-intercept equation is $y = +mx \ b$. What we need to complete this equation are the slope () $m = -\frac{1}{3}$. What we need to complete this equation are the slope () $m = -\frac{1}{3}$. Therefore, the slope of our line is m = 3 (the perpendicular one to the given line)

Method I We will substitute m and $(x y_1, y_1)$ in the form y = +mx b to solve for b. m = 3, $(x y_1, y_1) = (-3.5)$ 5 = -3.5 5

$$=> 5=-+9b$$

$$=> b=14$$
 The

equation of the line is y = +3.14x

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is $y m x x = (-+_1) y_1 y_2 3(x_{--+}(3)) 5 m^2 3, (x y_1, _1) = (-3,5)$

 \Rightarrow y=3(x++3) 5 Simplify the parenthesis

$$\Rightarrow$$
 $y = + +395x$ Distribute 5 into

parenthesis

$$\Rightarrow$$
 $y = +3.14x$

 x_1, y_1 **Example**

(7): Write an equation of a vertical line which passes through $\Box_{\Box}1,6\Box$.

Solution:

The equation of a vertical line is $x a \square$

The x-coordinate of the point $\square \square 1,6 \square$ is $\square 1$. Therefore, the equation of the vertical line is $x\square \square 1$

 x_1, y_1

Example (8): Write an equation of a horizontal line which passes through $\Box \exists 3, \exists 5\Box \Box$.

Solution:

The equation of a horizontal line is $y b \square$

$$\frac{5}{6}$$
 is \square . Therefore, the equation of the horizontal line is

 $y \square \square$ The *y*-coordinate of the point \square

□ 4 6□

Exercises:

- 1. Write the slope intercept equation of a line which passes through (0,5) whose slope is 4.
- **2.** Write the slope-intercept equation of a line which passes through $\square 0, \square 3 \square$ and $\square 4, 5 \square$.
- **3.** Write the slope-intercept equation of a line which passes through $\Box 4,0\Box$ and $\Box 7,\Box 1\Box$.
- **4.** Write the slope-intercept equation of a line which is parallel to $y \square \square 3.5x$, passing through $\square \square 6,3\square$
- 5. Write the slope-intercept equation of a line which is perpendicular to $y \square \square 7 \ 2x$, passing through $\square 3,2\square$
- **6.** Write an equation of a horizontal line which passes through $\Box 5,\Box 1\Box$
- 7. Write an equation of a vertical line which passes through $\Box 8, _^7 \Box \Box$. $\Box 3\Box$

Answers:

1.
$$y \square \square 4 5x$$
 2. $y \square \square 2 3x$ **3.** $y \square \square \square 3x 3$ **4.** $y \square \square 3x 21$ **5.** $y \square \square \square 7x 7$

6.
$$y \Box \Box 1$$
 7. $x \Box 8$