Slope-Intercept Form and Point-Slope Form

Slope of the line	$m=\underline{r_{i s e}}=\underline{y_{2}}-\underline{y_{1} r u n}$ $x_{2}-x_{1}$
Slope-Intercept Form	$y=+m x b \quad m$ is slope; bis y-intercept
Point-Slope Form	$y m x x=\left(-+_{1}\right) y_{1}$ or $y y-=_{1} m x x\left(-1_{1}\right)$
Slope of parallel lines	$m m_{1}={ }_{2}$ (slopes are the same)
Slope of perpendicular lines	$m m_{12}=-1$ (slopes are opposite \& reciprocal)
Equations of Horizontal and Vertical Lines	$y b=$ horizontal line $x a=$ vertical line, where $a \& b$ are constants

Example (1): Write the slope - intercept equation of a line which passes through $(0,-7)$ whose slope is 2 .

Solution:

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are slope ()$m \&$ y-intercept $(0, b)$, and the problem provides both
information.
$m=2$ and $b=-7$ The equation of the line is $y=-27 x$

Example (2): Write the slope-intercept equation of a line which passes through $(0,4)$ and x_{2}, y_{2}

$$
(3,-5)
$$

Solution:

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are slope ()$m \&$ y -intercept $(0, b)$, however, we only have y -intercept.

To find the slope, $\quad m=\underline{y_{2}}-\underline{y_{1}}=-\underline{54}=-\underline{9}=-3$

$$
x_{2}-x_{1} \quad 30-\quad 3
$$

$$
m=-3 \text { and } b=4 \text { The equation of the line is } y^{=-+} 34 x
$$

$$
x_{1}, y_{1}
$$

Example (3): Write the slope-intercept equation of a line which passes through ($-1,4$)whose slope is 5 .

Solution:

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are slope ()$m \&$ y-intercept $(0, b)$, however, we only have slope. Here there are two ways to find the equation of the line.

Method I We will substitute m and $\left(x y_{1}, 1\right)$ in the form $y=+m x b$ to solve for b.

$$
\begin{aligned}
m=5,\left(x y_{1}, 1\right)=(-1,4) \quad 4 & =-+5(1) b \\
& \Rightarrow \quad b=9 \text { The }
\end{aligned}
$$

equation of the line is $y=+59 x$

Method II Since we are given slope m and an ordered pair $\left(x y_{1}, 1\right)$, we can use Point-slope form to find equation of the line.

Point-slope form is y m $x x=\left(-+{ }_{1}\right) y_{1} y=5(x--+(1)) 4 \quad m=5,\left(x y_{1}\right.$,
$\left.{ }_{1}\right)=(-1,4) \Rightarrow y^{=} 5\left(x^{++}{ }_{1}\right)^{4}$ Simplify the parenthesis
into parenthesis

$$
\Rightarrow y=+59 x
$$

Example (4): Write the slope-intercept equation of a line which passes through (1,3) and x_{2}, y_{2}
($--5,1$).

Solution:

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are slope ()$m \&$ y-intercept $(0, b)$. However, we are given two ordered pairs $\left(x y_{1}, 1\right)$ and $\left(x y_{2},{ }_{2}\right)$ without slope and yintercept. Therefore, we need to find the slope first. Then we can use the two methods discussed on Example (3) to find the equation of the line.

$$
\left(\begin{array}{ll}
x & y_{1}, 1
\end{array}\right) \quad\left(x y_{2}, 2\right)
$$

To find the slope between two ordered pairs, $(1,3)$ and $(--5,1) \quad m=\underline{y_{2}}-\underline{y_{1}}=-\underline{13}=-\underline{4}=\underline{2}$

$$
x_{2}-x_{1}--51-63
$$

Method I Now we have slope, we will substitute m and $\left(x y_{1}, 1\right)$ in the form $y=+m x b$ to solve for b.

$$
\begin{aligned}
& m=\frac{2}{3},\left(x y_{1}, 1\right)=(1,3) \quad 3=\frac{2}{3}() 1+b \\
& \Rightarrow b=\frac{7}{3} \\
& \text { The equation of the line is } y=\frac{2}{3} x+\frac{7}{3}
\end{aligned}
$$

Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is y m $x x=\left(-+{ }_{1}\right) y_{1} \quad y=\underline{2}(x-+13)$

$$
\begin{gathered}
\frac{2}{3} m=,\left(x y_{1}, 1\right)=(1,3) \\
\Rightarrow y=\frac{2}{3} x-+\frac{2}{3} 3 \text { Distribute } \quad \frac{2}{3} \\
\\
\\
\text { into parenthesis }
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow y=\frac{2}{3} x-+\frac{2}{3} \frac{9}{3} \quad \text { Combine like term } \\
& \Rightarrow y=\frac{2}{3} x+\frac{7}{3}
\end{aligned}
$$

Example (5): Write the slope-intercept equation of a line which is parallel to $y=-42 x$, passing through (1,3).

$$
x_{1}, y_{1} \text { Solution: }
$$

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are slope ()$m \&$ y-intercept $(0, b)$. Since the line we're looking for is parallel to $y=-42 x$, their slopes are the same, $m=4$.

Method I We will substitute m and $\left(x y_{1}, 1\right)$ in the form $y=+m x b$ to solve for b.

$$
m=4,\left(\begin{array}{ll}
x & y_{1}, 1
\end{array}\right)=(1,3) \quad 3=41()+b \Rightarrow b=-1
$$

The equation of the line is $y=-41 x$
Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is y m $x x=\left(-+_{1}\right) y_{1} \quad y=4(x-+1) 3$

$$
m=4,\left(x y_{1}, 1\right)=(1,3) \quad \Rightarrow \quad y=-+443 x \text { Distribute } 4 \text { into parenthesis }
$$

$$
\Rightarrow y=-41 x \quad \text { Combine like term }
$$

Example (6): Write the slope-intercept equation of a line which is perpendicular to

$$
\frac{1}{3} x^{1}, y^{1}
$$

Solution:

Slope-intercept equation is $y=+m x b$. What we need to complete this equation are the slope ()m $\& y$-intercept $(0, b)$. Since our line is perpendicular to $y=-+\frac{1}{3} x 4$ (which was given), we can find the slope of our line by taking the opposite sign and using the reciprocal of the given line which has a slope of $m=-\frac{1}{3}$. Therefore, the slope of our line is $m=3$ (the perpendicular one to the given line)

Method I We will substitute m and $\left(x y_{1}, 1\right)$ in the form $y=+m x b$ to solve for b.
$m=3,\left(x y_{1}, 1\right)=(-3,5) 5=-+3(3) b$

$$
\begin{aligned}
& \Rightarrow \quad 5=-+9 b \\
& \Rightarrow \quad b=14 \text { The }
\end{aligned}
$$

equation of the line is $y=+314 x$
Method II We also can use Point-slope form to find the equation of the line.

Point-slope form is y m $x x=\left(-+_{1}\right) y_{1} y=3(x--+(3)) 5 \quad m^{=} 3,\left(x y_{1}, 1\right)=\left({ }^{-} 3,5\right)$

$$
\Rightarrow \quad y=3(x++3) 5 \text { Simplify the parenthesis }
$$

$$
\Rightarrow y=++395 x \quad \text { Distribute } 5 \text { into }
$$

parenthesis

$$
\Rightarrow y=+314 x
$$

$$
x_{1,}, y_{1} \text { Example }
$$

(7): Write an equation of a vertical line which passes through $\square_{\square 1,6} \square$.

Solution:

The equation of a vertical line is $x a \square$

The x-coordinate of the point $\square \square 1,6 \square$ is $\square 1$. Therefore, the equation of the vertical line is $x \square \square 1$

$$
x_{1}, y_{1}
$$

Example (8): Write an equation of a horizontal line which passes through ${ }^{\square} \bar{\square}^{3}, \bar{\square}^{5 \square}{ }_{\square}$.

Solution:

The equation of a horizontal line is $y b \square$

$$
\square 3, \square \square_{\square} \quad \frac{5}{6} \text { is } \square \text {. Therefore, the equation of the horizontal line is } \frac{5}{6}
$$

$y \square \square$ The y-coordinate of the point \square

ㄴ 4 —

Exercises:

1. Write the slope - intercept equation of a line which passes through $(0,5)$ whose slope is 4 .
2. Write the slope-intercept equation of a line which passes through $\square 0, \square 3 \square$ and $\square 4,5 \square$.
3. Write the slope-intercept equation of a line which passes through $\square 4,0 \square$ and $\square 7, \square 1 \square$.
4. Write the slope-intercept equation of a line which is parallel to $y \square \square 35 x$, passing through $\square \square 6,3 \square$
5. Write the slope-intercept equation of a line which is perpendicular to $y \square \square 72 x$, passing through $\square 3,2 \square$
6. Write an equation of a horizontal line which passes through $\square 5, \square 1 \square$
7. Write an equation of a vertical line which passes through ${ }_{\square 8},{ }_{-} \square_{\square}$.

Answers:

1. $y \square \square 45 x$
2. $y \square \square 23 x$
3. $y \operatorname{ta}\left[\frac{1}{3} x \frac{4}{3}\right.$
4. y प प3x 21 5. $y \operatorname{at} \frac{1}{7} x \frac{17}{7}$
5. $y \square \square 1$
6. $x \square 8$
