Solving Linear Applications

Many real-life applications can be approximated by a linear model. Information can come in a variety of ways to enable us to create a model. These examples show some of the ways that we can build our model.
Our basic equations that we can use are:
$y=m x+b$
$m=y x^{2_{2}}--y_{x_{1}}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Example 1: Given both m and b.

1. A student buys a basic phone that has a base charge of $\$ 16.44$ per month, with each minute of calling time costing them $\$.20$. Develop a model that can help predict the cost each month. We need 2 things for the linear model: slope and y -intercept (base/fixed costs). a. What we know:
a. The model is $C(x)=m x+b$.
b. The base cost is $\$ 16.44$, so $\mathrm{b}=16.44$.
c. The slope or the part that changes is $\$.20$ per minute. The number of minutes of calls will be x. This gives $m=.20$.
Thus, our cost equation is $\boldsymbol{C}(\boldsymbol{x})=.20 \boldsymbol{x}+\mathbf{1 6 . 4 4}$
b. If they know that they only have $\$ 66.44$ this month for the phone bill, how many minutes can they use?
If $C(x)=66.44$, we need to solve this for x :
$66.44=.20(x)+16.44$
$66.44=.20(x)+16.44$
$50.00=.20 x$
$50.00=$ \qquad
$x=250$
Thus, the student can use their phone for 250 minutes this month and stay on budget!

Example 2: Given b and a point.

2. The population of a small town in the panhandle of Florida has been showing an incline in the years from 2002 to 2023. In 2002, the population was 15,200 . In 2023, a survey shows that the population has grown to 16,460 .

Write a linear equation modelling the population of this town, $\mathrm{P}(\mathrm{t})$, as a function of t , the number of years since 2002.
a. What we know:
a. The model is $P(t)=m t+b$.
b. Given: $(2002,15,200)$ and $(2023,16,460)$.
c. The base population in 2002 is 15,200 so $b=15,200$.
d. The slope or the part that changes is calculated by using the two points we were given.

$$
m=\begin{array}{lll}
y_{2}-y_{1} & 16,460-15,200 & 1260 \\
& \\
& ==60
\end{array}
$$

$$
x_{2}-x_{1} \quad 2023-2002 \quad 21
$$

Now we know that the small town is gaining 60 people per year.
Thus, our population equation is $\boldsymbol{P}(\boldsymbol{t})=\mathbf{6 0 t}+\mathbf{1 5 , 2 0 0}$
b. Use your equation to predict the population in the year 2040 to help understand the need for more teachers, police officers, etc.
a. We know the model: $P(t)=60 t+15,200$
b. To calculate t , the time since 2002, we take the given year and subtract: 2040-2002=38 c. Substitute this into our model.

$$
\begin{aligned}
\boldsymbol{P}(\mathbf{3 8}) & =60(38)+15,200 \\
& =17,480 . \text { This is the predicted population in the year } 2040 .
\end{aligned}
$$

Example 3: Given 2 Random Points

3. A company was doing a study on their advertising budget and its affect on sales. They noted that when they spent $\$ 40,000$ on advertising, they sold 100,000 bags of candy. They also noted that when they spent $\$ 60,000$, they sold 200,000 bags of candy. They would like to develop a linear model that will give them the correlation between advertising budget and sales.
a. We can pair the given information as two ordered pairs; (\$advertising, sales). This give us two points to work with. $(40,000,100,000)$ and $(60,000,200,000)$.
b. The model is $C(x)=m x+b$. We need to determine the slope (m) and the y -intercept (b).
c. $m=\underset{x_{2}-x_{1}}{y_{2}-y_{1}} \quad \frac{200,000-100,000}{60,000-40,000}=\underline{100,000}==5$, which we can interpret as 5 bags sold per dollar spent in 20,000 advertising.
d. We can then calculate a b (y-intercept) for this model. We can use: $y-y_{1}=m\left(x-x_{1}\right) y-100,000=5(x-$ $40,000)$; using the point $(40,000,100,000) y-100,000=5 x-200,000$; then solve this for y .

$$
y=5 x-300,000
$$

So our linear model is $C(x)=5 x-300,000$.
e. If the company wants to sell 350,000 bags of candy, how much should they spend in advertising?

$$
\begin{aligned}
C(x) & =5 x-300,000 \text { is the model. } \\
350,000 & =5 x-300,000 ; \text { we want } \mathrm{C}(\mathrm{x})=350,000 \\
x & =130,000 .
\end{aligned}
$$

To interpret, the company should spend $\$ 130,000$ on advertising to reach their target goal of selling 350,000 bags of candy.

You Try:

A company sells laptops. They are trying to develop a model that will show them how many laptops will be sold if they spend a certain amount on marketing. They have data that shows that if they spend $\$ 150,000$, they will sell 65,000 laptops. If they spend $\$ 175,000$, they will sell 77,500 laptops. Calculate the linear model that shows the correlation between marketing and estimated laptops to be sold.

ANS: $M(x)=.5 x-10,000$.

