How to find an Inverse Function

Inverse Function - A function derived from an original function in which each input becomes an output and each output because an input for the function.

Example 1: Inverse Relations:

Find the inverse of the relation:

$\{(1,2),(2,4),(7,-2),(9,-3),(10,6)\}$

Solution:

Interchange each x and y value and rewrite the relation:
$\{(2,1),(4,2),(-2,7),(-3,9),(6,10)\}$

Example 2: Inverse Functions

Find the inverse of the following function:
$\mathrm{f}(\mathrm{x})=8 \mathrm{x}+9$
Solution:
Step 1: Replace $\mathrm{f}(\mathrm{x})$ with y :
$y=8 x+9$
Step 2: Interchange x and y :
$x=8 y+9$
Step 3: Solve for y (Subtract 9 from each side):
$x-9=8 y+9-9 \quad \rightarrow \quad x-9=8 y$
Step 4: Divide by 8 on each side:
$\frac{x-9}{8}=\frac{8 y}{8} \quad \rightarrow \quad \frac{x-9}{8}=y$
Step 4: Replace y with $\mathrm{f}^{-1}(\mathrm{x})$:

$$
f^{-1}(x)=\frac{x-9}{8}
$$

Example 3:

Find the inverse of the following function:
$f(x)=\frac{2}{x+3}$
Step 1: Replace $f(x)$ with y :
$y=\frac{2}{x+3}$
Step 2: Interchange x and y :
$x=\frac{2}{y+3}$
Step 3: Solve for y (Multiply by $\mathrm{y}+3$ on each side):
$\mathrm{x}(\mathrm{y}+3)=\frac{2(\mathrm{y}+3)}{(\mathrm{y}+3)} \quad \rightarrow \quad x(y+3)=2$
Step 4: Divide by x on each side:
$\frac{x}{x}(y+3)=\frac{2}{x} \quad \rightarrow \quad y+3=\frac{2}{x}$
Step 5: Subtract 3 on each side:
$y+3-3=\frac{2}{x}-3 \rightarrow y=\frac{2}{x}-3$
Step 6: Replace y with $\mathrm{f}^{-1}(\mathrm{x})$:
$f^{-1}(x)=\frac{2}{x}-3$

Practice Problems

Find the inverse of the following functions:

1) $h(x)=x^{2}-4$
2) $f(x)=\frac{4 x-1}{-2 x+3}$
3) $g(x)=\sqrt{5 x-6}$

Solutions:

1) 2) $h^{-1}(x)=\sqrt{x+4}$
1) $f^{-1}(x)=\frac{3 x+1}{2 x+4}$
2) $g^{-1}(x)=\frac{y^{2}+6}{5}$
