Basic Exponents

Writing a number in exponential form means to use a "shorthand" method to tell how many times a factor is being multiplied by itself. For example 2⁴ means that the base, 2, is being multiplied by itself 4 times.

$$2^4 = 2 \ 2 \ 2 \ 2 \cdot \cdot \cdot$$

More examples:

There is an important difference between $(-4)^2$ and -4^2 . The difference is the parentheses. In $(-4)^2$ the base is -4. We would read this as "negative four squared" or "the square of negative four."

$$(-4)^2 = - - = (44)($$
) 16 "The square of negative 4 is 16"
$$(- = - - - = -4)^3 (444)()($$
) 64 "The cube of negative 4 is -64"

In -4^2 , the base is positive four. We could read this as "the negative of four squared" or "the opposite of the square of four."

$$-4^2 = -(4 \ 4 \cdot) = -16$$
 "The opposite of the square of 4 is -16."
 $-4^3 = -(4 \ 4 \ 4 \cdot \cdot) = -64$ "The opposite of the cube of 4 is -64."

NOTICE that when the base is a negative number (inside parentheses) that the answer will be positive if the exponent is <u>even</u> and negative if the exponent is <u>odd</u>. However, when the base is a positive number with a negative sign in front, the answer is <u>always</u> negative.

$$(-2)^{2} = -(2)(-2) = 4$$

$$(-2)^{3} = -(2)(-2)(-2) = -8$$

$$(-2)^{4} = -(2)(-2)(-2)(-2) = 16$$

$$(-2)^{5} = -(2)(-2)(-2)(-2)(-2) = -32$$

$$-2^{2} = (2 \ 2 \ 2 \ \cdots) = -8$$

$$-2^{4} = (2 \ 2 \ 2 \ 2 \ \cdots) = -16$$

$$-2^5 = (2 \ 2 \ 2 \ 2 \ 2 \ \cdots) =$$

-32

Sometimes we have a problem which has more than one base. When that occurs we must simplify each base separately and then do the operation.

EXAMPLE

KEY:

$$(-2)^{3} \cdot 5^{2} = -(2)(-2)(-2) \cdot (5)(5)$$

$$= -8$$

$$25$$

$$\cdot = -2$$

$$00$$

EXAMPLE

1. 2^6

$$(\frac{3}{2})$$
 $(\frac{1}{2})$ $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}$

$$= \frac{9}{4} \cdot \frac{1}{4}$$
$$= \frac{9}{16}$$

2.
$$(-3)_2$$

5. 5₃ 9. $(1)_3$

3. -3^2

| (2 | J

4. $(-3)_4$

- 6. -2_5 10. $((-52))_2 \cdot 5_2$

7.
$$(-2)^2 \cdot \frac{1}{4}$$

5. 125 7. 1 9.
$$\frac{1}{8}$$

6. -328. -72 10. 4

8.
$$-32_2 \cdot _3$$