Basic Exponents

Writing a number in exponential form means to use a "shorthand" method to tell how many times a factor is being multiplied by itself. For example 2^{4} means that the base, 2 , is being multiplied by itself 4 times.

$$
2^{4}=2222 \ldots
$$

More examples:

$$
\begin{gathered}
22=22 \cdot \\
23=222 \cdots \\
24=2222 \cdots 2^{5}=22222 \cdots \text { a a a } a \text { a } a^{5}=\cdots
\end{gathered}
$$

There is an important difference between $(-4)^{2}$ and -4^{2}. The difference is the parentheses. In $(-4)^{2}$ the base is -4 . We would read this as "negative four squared" or "the square of negative four."

$$
(-4)^{2}=--=(44)(\quad) 16 \quad \text { "The square of negative } 4 \text { is }
$$

$16 "$

$$
(-=---=-4)^{3}(444)()(\quad) \quad 64 \quad \text { "The cube of negative }
$$

4 is -64 "

In -4^{2}, the base is positive four. We could read this as "the negative of four squared" or "the opposite of the square of four."

$$
\begin{array}{ll}
-4^{2}=-(44 \cdot)=-16 & \text { "The opposite of the square of } 4 \text { is }-16 . " \\
-4^{3}=-(444 \cdot \cdot)=-64 & \text { "The opposite of the cube of } 4 \text { is }-64 . "
\end{array}
$$

NOTICE that when the base is a negative number (inside parentheses) that the answer will be positive if the exponent is even and negative if the exponent is odd. However, when the base is a positive number with a negative sign in front, the answer is always negative.

$$
\begin{array}{ll}
(-2)^{2}=-(2)(-2)=4 & -2^{2}=\left(\begin{array}{ll}
2 & 2
\end{array}\right)=-4 \\
(-2)^{3}=-(2)(-2)(-2)=-8 & -2^{3}=\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)=-8 \\
(-2)^{4}=-(2)(-2)(-2)(-2)=16 & -2^{4}=\left(\begin{array}{llll}
2 & 2 & 2 & 2 \cdots
\end{array}\right)= \\
(-2)^{5}=-(2)(-2)(-2)(-2)(-2)=-32 & -16
\end{array}
$$

Sometimes we have a problem which has more than one base. When that occurs we must simplify each base separately and then do the operation.
EXAMPLE

EXAMPLE
KEY:

$$
\left.\begin{array}{rl}
1.64 & 3 .-9 \\
2.9 & 4.81
\end{array}\right) \begin{aligned}
(-2)^{3} \cdot 5^{2} & =-(2)(-2)(-2) \cdot(5)(5) \\
& = \\
& -8 \\
& \\
& \cdot= \\
& -2 \\
&
\end{aligned}
$$

(3) (1) 3311

$$
\lceil 2||\cdot|| 2|\mid=-2 \overline{2} 22 .
$$

EXERCISES: Evaluate

1. 2^{6}
2. $(-3)_{2}$
```
    l
```

$$
\begin{aligned}
& =\frac{9}{4} \cdot \frac{1}{4} \\
& =\frac{9}{16}
\end{aligned}
$$

5. $\quad 539 . \quad(1)_{3}$
6. -3^{2}
| 2 ||
7. $(-3)_{4}$
8. -25
9. (|| $-52 \|_{2} \cdot 5_{2}$
10. $(-2)^{2} \cdot \frac{1}{4}$
11. $1257.1 \quad 9 . \frac{1}{8}$
12. $-328 .-7210.4$
13. $-322 \cdot 3$
