Factoring Summary

(1) factor out the Greatest Common Factor (GCF) Form for GCF: ax^{2}
$+a x+a b=a\left(x^{2}+x+b\right)$
(2) factor by grouping (see example below)
(3) form:

form: $\quad{ }^{2} \underline{+b x+c} \cdot \underline{\mathrm{P}}^{2}$ Use trial and error to find the factored form.
form: $\quad-\quad$ -
(5)
(6) form:
$\pm 2 \mathrm{PQ}+\mathrm{Q}^{2}$
Then this factors into: $(\mathrm{P} \pm \mathrm{Q})^{2}$ (called "perfect square")
(7) form: cannot be factored with

$x^{2}-y^{2}=(x+y)(x-y)$	
$x 2+y 2$	$($
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$	
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$	

Exa m p les: Directions - factorallofthe following completely.
(1) $3 \mathrm{x}^{2}+9 \mathrm{x}+15$ has a GCF of 3 . (NOTE: ALWAYS FACTOR OUT GCF FIRST!!)

Thus, factoring out 3 yields: $\quad 3\left(\mathrm{x}^{2}+3 \mathrm{x}+5\right)$
(Since the expression inside the parintheses cannot be factored, this is the final answer.)
(2) $3 x^{3}+2 x^{2}-6 x-4$ is a candidate for factoring by grouping. Grouping terms:

$$
\left(3 x^{3}+2 x^{2}\right)+(-6 x-4)=x^{2}(3 x+2)-2(3 x+2) \quad=\quad(3 x+2)\left(x^{2}-2\right)
$$

(3) $x^{2}+4 x-12$ Since $\mathrm{a}=1$ in the trinomial, need to find factors of -12 that add to get 4 . All the possible pairs of factors for -12 are: $1,-12 ;-1,12 ; 2,-6 ;-2,6 ; 3,-4 ;-3,4$ Since the only pair that adds to 4 is $\{-2,6\}$ the answer is: $(\mathbf{x}-\mathbf{2})(\mathbf{x}+\mathbf{6})$
(4) $3 x^{2}+2 x-8$ Since $a \neq 1$ in the trinomial, use trial and error to find the answer.

The factor pairs of 3 are: $\{3,1\}$. The factor pairs for -8 are: $\{1,-8\},\{-1,8\},\{2,-4\},\{-2,4\} \underline{\text { By trial and }}$ error it is found that the answer is $(\mathbf{3 x}-4)(\mathbf{x}+\mathbf{2})$

$\underline{\mathrm{SignH} \text { ints }}$

then factored form is then $\quad(\mathrm{px}+\mathrm{m})(\mathrm{qx}+\mathrm{n})$ factored form is then factored form is $(\mathrm{px}-\mathrm{m})(\mathrm{qx}-\mathrm{n})$ $(p x+m)(q x-n) \underline{O R}(p x-m)(q x+n)$
(5) $4 \mathrm{x}^{2}-12 \mathrm{x}+9$ is in the form $\underline{\mathrm{P}}_{2} \pm 2 \mathrm{PQ}+\mathrm{Q}^{2}$. Thus, $4 \mathrm{x}^{2}-12 \mathrm{x}+9=(2 \mathrm{x}-3)^{2}$ (perfect square)
(6) $9 \mathrm{x}^{2}-36 \mathrm{y}^{2}$ is in the form of x^{2} - $^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$. Thus, $9 \mathrm{x}^{2}-36 \mathrm{y}^{2}=(\mathbf{3 x}+\mathbf{6 y)}(\mathbf{3 x}-\mathbf{6 y})$
$9 x^{2}+36 y^{2}$ is in the form of $x^{2}+y^{2}$. Thus, $9 x^{2}+36 y^{2}$ is non-factorable using integers.

$3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$

$$
\begin{equation*}
8 \mathrm{x}^{3}-27 \mathrm{y}^{3} \quad \text { is in the form of } \mathrm{x}_{3} \mathrm{Z}^{\mathrm{y}} 3_{3}=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}=+\mathrm{xy+}+\mathrm{y} \text { 2 Thus, } \quad 8 \mathrm{x}^{3}-27 \mathrm{y}^{3}=(2 \mathrm{x}-\right. \tag{9}
\end{equation*}
$$

$$
3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)
$$

