Factoring Summary

- (1) factor out the <u>Greatest Common Factor</u> (GCF) Form for GCF: $ax^2 + ax + ab = a(x^2 + x + b)$
- (2) factor by grouping (see example below)
- (3) form: $x + b + c \cdot a x$ Find factors of c that add to get b and multiply to get c.

2

- (4) form: $\frac{a}{b} + \frac{b}{x} + \frac{c}{c}$. Use trial and error to find the factored form.
- (5) $\frac{\pm 2 \text{ PQ} + \text{Q}^2}{\text{Then this factors into: } (\text{P} \pm \text{Q})^2 \text{ (called "perfect square")}}$
- (6) form: $x^2 y^2 = (x+y)(x-y)$
- (7) form: <u>cannot</u> $2x^2 + y^2$ (
 integers!) $x^3 + y^3 = (y + y)(y^2 + yy + y^2)$
- (8) form: $x^3 + y^3 = (x+y)(x^2 xy + y^2)$
- (9) form: $x^3 y^3 = (x y)(x^2 + xy + y^2)$

Examples: Directions - factorallofthe following completely.

- (1) $3 x^2 + 9 x + 15$ has a <u>GCF</u> of 3. (NOTE: <u>ALWAYS FACTOR OUT GCF FIRST!!</u>) Thus, factoring out 3 yields: $3(x^2 + 3 x + 5)$ (Since the expression inside the parintheses cannot be factored, this is the final answer.)
- (2) $3 x^3 + 2 x^2 6 x 4$ is a candidate for factoring by grouping. Grouping terms: $(3x^3 + 2 x^2) + (-6 x 4) = x^2(3x + 2) 2(3x + 2) = (3x + 2)(x^2 2)$
- (3) $x^2 + 4x 12$ Since <u>a=1</u> in the trinomial, need to <u>find factors of -12 that add to get 4</u>. All the possible pairs of factors for -12 are: 1,-12; -1,12; 2,-6; -2,6; 3,-4; -3,4 Since the only pair that adds to 4 is $\{-2,6\}$ the answer is: (x-2)(x+6)
- (4) 3 x² +2 x 8 Since <u>a≠1</u> in the trinomial, use <u>trial and error</u> to find the answer. The factor pairs of 3 are: {3,1}. The factor pairs for -8 are: {1,-8}, {-1,8}, {2,-4}, {-2,4} <u>By trial and error</u> it is found that the answer is (3x - 4)(x + 2)

 $\frac{S \text{ ign H int s}}{S \text{ ign H int s}}:$ If trinomial has the form:

If trinomial has the form: $a x^2 + b x + c$ $a x^2 - b x + c$ $a x^2 - b x + c$ $a x^2 \pm b x - c$ then factored form is then factored form is then factored form is then factored form is (p x + m)(q x - n) (p x + m)(q x - n) OR (p x - m)(q x + n)

- (5) $4 x^2 12 x + 9$ is in the form $\frac{P_2}{\pm 2 PQ + Q^2}$. Thus, $4 x^2 12 x + 9 = (2 x 3)^2$ (perfect square)
- (6) $9 x^2 3 6 y^2$ is in the form of $x^2 y^2 = (x + y)(x y)$. Thus, $9 x^2 3 6 y^2 = (3x + 6y)(3x 6y)$
- (7) $9 x^2 + 3 6 y^2$ is in the form of $x^2 + y^2$. Thus, $9 x^2 + 3 6 y^2$ is **non-factorable** using integers.
- (8) $8 x^3 + 2 7 y^3$ is in the form of x = (x + y)(x) = (x + y)(x)
- (9) $8 x^3 27 y^3$ is in the form of $x^3 y^3 = (x y)(x)^2 + xy + y^2$ Thus, $8 x^3 27 y^3 = (2 x 3y)(4x^2 + 6 xy + 9 y^2)$