Factoring Trinomials in the Form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ by Grouping

The method of factoring by grouping can be used as an alternative to factoring trinomials by trial and error. Let us recall the procedure for multiplying binomials using FOIL:

$$
\begin{array}{ll}
\text { Simplify: } & (x+2)(x+3) \\
& x^{2}+++3 x 2 \times 6 \\
& x^{2}++5 \times 6
\end{array}
$$

Now reverse directions and factor the trinomial:

$$
x^{2}+5 x+6 \quad \text { Find factors of } 6 \text { that add to } 5 \text {. They are } 2 \text { and } 3 .(x+2)(x+3)
$$

When we factor trinomials of the form $x^{2}+b x+c$, we look for the factors of c (the constant) that add to b (the coefficient of the first degree term). Actually, what we are doing is looking for the factors of 1 (the coefficient of the squared term) times c (the constant) that add to b (the coefficient of the first degree term). Thus, when we want to factor trinomials of the form $x^{2}+b x$ $+c$, we look for factors of $a c$ (the product of the coefficient of the squared term and the constant) that add to b (the coefficient of the first degree term).

Now let us see how factoring by grouping can also work:

$$
\begin{array}{ll}
x^{2}+5 x+6 & \begin{array}{l}
\text { Find factors of } 6 \text { (which is the product of } 1 \text { and } 6 \text { where } 1 \text { is the } \\
\text { coefficient of the squared term and } 6 \text { is the constant) that add to } \\
5 \text { (which is the coefficient of the first degree term) and rewrite } \\
5 x \text { as a sum of two first degree terms whose coefficients are }
\end{array} \\
x^{2}+2 x+3 x+6 & \begin{array}{l}
\text { pair off the terms }
\end{array} \\
\left(x^{2}+2^{x}\right)+(3 x+6) x & \begin{array}{l}
\text { Factor out the GCF of each pair. } \\
\text { Notice that this is not the answer yet. We have terms, not factors. } \\
\text { Now factor out the common binomial factor. }
\end{array} \\
(x+2) 3(x+2) & \text { This is the factored form. }
\end{array}
$$

Example

those factors

Multiply using FOIL: $(2 x+33)(x+4)$

$$
6 x^{2}+++8 x 9 x 12
$$

$$
6 x^{2}+17 x+12
$$

Now reverse directions and factor the above:

$$
\begin{aligned}
& 6 x^{2}+17 x+12 \\
& 6 x^{2}+9 x+8 x+12 \\
& \left(6 x^{2}+9 x\right)+(812 x \\
& 32 x x(++3) 42 \\
& (2 x+33)(x+4)
\end{aligned}
$$

Find 2 factors of 72 (the product of 6 and 12) which add to
17. They are 9 and 8 . Replace $17 x$ with $9 x+8 x$

$$
\left(6 x^{2}+9 x\right)+(812 x+) \quad \text { Factor out the GCF from each pair of terms. }
$$

$$
32 x x(++3) 42(x+3) \quad \text { Factor out the common binomial factor. }
$$

This is the factored form. Notice that this matches the original multiplication problem above.
When we changed $17 x$ to $9 x+8 x$ in the example above, we also could have used $8 x+9 x$. Since addition is commutative, we should get the same result. We begin again:

$$
\begin{aligned}
& 6 x^{2}+17 x+12 \\
& 6 x^{2}+8 x+9 x+12 \\
& \left(6 x^{2}+8 x\right)+(912 x+) \\
& 234334 x x(+)+(x+) \\
& (3423 x+)(x+)
\end{aligned}
$$

Notice that we have the same two factors but in the reversed order. Since multiplication is commutative, this does not matter and both answers are equally correct.

Example Factor $2 x^{2}-x-21$ by grouping.
$2 x^{2}-x-21$
$2 x^{2}-7 x+6 x-21 \quad$ Group the terms in pairs.
$\left(2 x^{2}-7 x\right)+(621 x-)$
$x x(2-+7) 32(x-7)$

$$
(2 x-7)(x+3)
$$ -1 .

Factor out the GCF from each pair.
Factor out the common binomial factor.
This is the factored form.

Find the factors of $-42(2(21) \times-)$ which add to

That would be -7 and 6 . Rewrite $-x$ as $-7 x+6 x$

If we had reversed the order of the $-7 x$ and $6 x$ on the second line, we would have the following work:

$$
\begin{array}{ll}
2 x^{2}+6 x-7 x-21 & \begin{array}{l}
\text { Since the third term is negative, remember to change the } \\
\text { signs in the second pair of parentheses when you factor out } \\
-1 .
\end{array} \\
\left(2 x^{2}+6 x\right)-(721 x+) & \text { Factor out the GCF of each pair. } \\
2 x x(+-3) 7(x+3) & \text { Factor out the common binomial factor. } \\
(x+32)(x-7) &
\end{array}
$$

Notice that it was a little easier the first time, when we made the second term negative and the third one positive.

Example Factor: $3 x^{2}+13 x-10$

$$
\begin{align*}
& 3 x^{2}+13 x-10 \tag{10}\\
& =3 x^{2}-+2 x 15 x-10 \\
& =\left(3 x^{2}-2^{x}\right)+(15 x-10) \\
& =x(3 x-+2) 53(x-2) \\
& =(3 x-2)(x+5)
\end{align*}
$$

Factors of -30 that add to 13 are 15 and -2

Notice that we purposely put the negative term second and the positive term third.

Example Factor: $2 x^{2}-7 x+6$

$$
2 x^{2}-+7 x 6
$$

$$
2 x^{2}--+3 x \quad 4 x
$$

$$
6\left(2 x^{2}\right.
$$

$$
\left.-3^{x}\right)-(4 x-6)
$$

$$
x(2 x--3) 22(
$$

$$
x-3)
$$

2612 =
Factors of 12 that add to -7 are -3 and -4 .
Since both the second and third terms are negative, we will have to factor out a negative from the latter pair of terms.

$$
(2 x-3)(x-2)
$$

When attempting to factor any trinomial, remember to always look for a common factor first.

Example

Factor $6 x^{3}+22 x^{2}+20 x$

$$
\begin{aligned}
& 23 x x(2+1110 x+) \\
& 23 x x\left[\left[^{2}+6510 x+x+\right.\right. \\
& 23 x\left[\left\lfloor\left(x^{2}+6 x\right)+(510 x+)\right]\right] \\
& 23 x x x[[(+25)+(x+2)]] \\
& 2 x x(+235)(x+)
\end{aligned}
$$

Example Factor: $30 x^{5}+5 x^{4}-75 x^{3}$

$$
\begin{array}{ll}
56 x^{3}\left(x^{2}+115 x-\right) & \text { Factors of }-90 \text { that add to } 1 \text { are }-9 \text { and } 10 \\
5 x^{3}\left[\left[6 x^{2}-9 x+10 x-15\right]\right] 5 x^{3} \\
{\left[\left(6 x^{2}-9^{x}\right)+(10 x-15)\right]} \\
\quad\lfloor \\
5 x^{3}[[3 x(2 x-3)+52(x-3)]] \\
5 x^{3}(2 x-3)(3 x+5) &
\end{array}
$$

$39 x x\left({ }^{2}-134 x+\right)$

$$
\begin{aligned}
& 3 x\left(9 x^{2}-9 x-4 x+4\right) \\
& 3 x\left[\left[\left(9 x^{2}-9^{x}\right)-(4 x-4)\right]\right\rceil \\
& 3 x[[9 x x(-1)-4(x-1)]] \\
& 3 x x(-1)(9 x-4)
\end{aligned}
$$

Not every trinomial will factor. For example, try to factor $5 x^{2}+7 x+9$.
$\begin{array}{ll}5 x^{2}+7 x+9 & \text { First we check for a common factor other than 1. There is } \\ \text { none. Then we look for factors of } 45 \text { that add to } 7 \text {. The } \\ \text { factor pairs for } 45 \text { are: }\end{array}$

$$
\begin{array}{r}
1,45 \quad 1+45=46 \\
3,153+15=18 \\
5,9 \quad 5+9=14
\end{array}
$$

None of these add to 7.

Therefore $5 x^{2}+7 x+9$ is a prime polynomial-its only factors are itself and one, and it cannot be factored into two binomials. We say that this polynomial is non-factorable over the integers.

Example Factor $3 x^{2}+7 x-12$

$$
3 x^{2}+7 x-12 \quad \text { There is no common factor other than } 1 .
$$

$$
3 \cdot(12)-=-36
$$

Factors of -36 are:

$1,-36$	$1-36=-35$	$-1,36$	$-1+36=35$
$2,-18$	$2-18=-16$	$-2,18$	$-2+18=16$
$3,-12$	$3-12=-9$	$-3,12$	$-3+12=9$
$4,-9$	$4-9=-5$	$-4,9$	$-4+9=5$
$6,-6$	$6-6=0$		

1, -36
$1-36=-35$
-1, 36
$-1+36=35$
2, -18
$2-18=-16$
-3, 12
$-3+12=9$
4, -9
$6-6=0$
Since none of these pairs add to 7 , there will be no binomial factors. Therefore this polynomial is prime and is non-factorable over the integers.

EXERCISES

1. $2 x^{2}+x-15$ 9. $21 x^{2}-13 x+2$
2. $3 x^{2}-11 x+10 \quad 10$. $20 x^{2}+39 x y-11 y^{2}$
3. $3 x^{2}+13 x+4$ 11. $8 x^{2}+47 x-6$
4. $7 x^{2}+8 x+1$
5. $3 x^{2}+4 x-8$
6. $16 x^{2}+30 x y+9 y^{2}$
7. $24 x^{2}-37 x-5$
8. $6 x^{2}+x-1$
9. $15 x^{2}-39 x+18$
10. $12 x^{2}+11 x-5$
11. $18 x^{4}+15 x^{3}-75 x^{2}$
12. $12 x^{3} y-4 x y^{25}-x y^{1}$
13. $20 x^{2}-28 x y-3 y^{2}$

Answers

1. $(2 x-5)(x+3)$
2. $(4 x+53)(x-1)$
3. $(8 x+3 y)(2 x+3 y)$
4. $(3 x-5)(x-2)$
5. $(10 x+y)(2 x-3 y)$
6. $(3 x-58)(x+1)$
7. $(3 x+1)(x+4)$
8. $(7 x-23)(x-1)$
9. $35(x-3)(x-2)$
10. $(7 x+1)(x+1)$
11. $(5 x+11 y)(4 x y-)$
12. $3 x^{2}(3 x-52)(x+5)$
13. prime
14. $(8 x-1)(x+6)$
15. $x y^{4}(6 x y+)(2 x y-)$
16. $(3 x-12)(x+1)$
