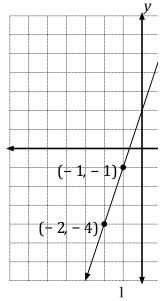
Graphing Linear Equations


A linear equation has infinitely many ordered pair solutions. The graph of an equation in two variables is a drawing of the ordered pair solutions of the equation. It is not possible to name *all* the solutions. We generally find three ordered pair solutions and graph them. The complete solution set can be shown by drawing a straight line through the graphs of the ordered pairs. An arrow on each end of the line shows that the solution set continues in both directions.

EXAMPLE: Graph y = 3x + 2

To find three ordered pair solutions, pick **any** three values for x and solve for y.

Let
$$x = 1$$
:
 $y = 3(1) + 2$
 $y = 3(-1) + 2$
Let $x = -2$:
 $y = 3(-2) + 2$
 $y = 3(-2) + 2$
 $y = -6 + 2$
 $y = 5$
 $y = -1$
 $y = -4$
 $y = -4$
 $y = -4$

Now we graph the ordered pair solutions (1, 5), (-1, -1), and (-2, -4).

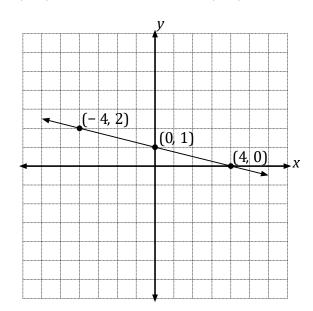
NOTE that the three points fall in a straight line. **EVERY** point on the line is a solution of the equation and can be represented by an ordered pair. Two points are sufficient to draw a straight line, but we generally get a third point as a check.

EXAMPLE: Graph y = -4x + 1

NOTE that the coefficient of x in this equation is a fraction. When this occurs we want to pick values for x which will allow us to eliminate the fraction. As the denominator of the fraction is 4, the easiest choices to work with will be multiples of 4, such as 0, 4 and -4.

Let
$$x = 0$$
:

$$y = -\frac{1}{4}(0) \ 1 + \qquad y = -\frac{1}{4}(4) \ 1 + \qquad y = -\frac{1}{4}(4) \ 1$$


$$y = 0 + 1 \qquad y = 1 + 1$$

$$y = 1 \qquad y = 0 \qquad y = 2$$
Let $x = -4$:

$$y = -\frac{1}{4}(4) \ 1 + \qquad y = -\frac{1}{4}(4) \ 1$$

$$y = 1 + 1 \qquad y = 2$$

(4, 0)

Any time the coefficient of x is a fraction, convenient choices for x are zero, the denominator, and the opposite of the denominator.

$$y=-\frac{2}{3x} 8$$
 choose 0, 3, and -3
 $y=-\frac{2}{5x} 4$ choose 0, 5, and -5

Sometimes the equation is in the form of Ax + By = C, and in this case we can solve the equation for y first.

EXAMPLE: Graph 2 3 1x + y = 2

(0, 1)

To solve the equation for y, follow these steps:

$$2x + 3y = 12$$

(-4, 2)

1. To isolate the y term, add the opposite of the term 2x -2x +3y = -2x +12 containing x to both sides of the equation.

$$3y = -2x + 12$$

2. Divide both sides of the equation by the coefficient of y. 3y = -2x + 12 This means

both terms on the right-hand side must be

3 3

divided by the coefficient. 2y = -x + 4

3

Once the equation is in the form of y = mx + b, the ordered pair solutions can be found by picking values for x and solving for y. As the coefficient of x is -3 we would pick 0, 3 and -3 to get the ordered pairs.

Let x = 0:

$$y = -\frac{2}{3}(0) \ 4 + y = -\frac{2}{3}(3) \ 4 + y = -2 \ 4$$

$$y = -2 \ 3 \ 3 \ 4 + y = -2 \ 4$$

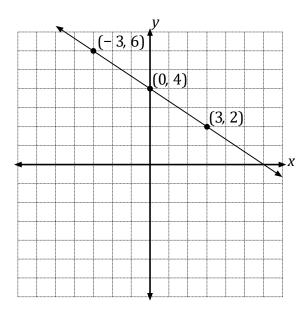
$$y = -2 \ 4$$

$$y = -2 \ 4$$

$$y = -2 \ 4$$

Let
$$x = 3$$
:

$$y = -\frac{2}{3(3)} + 4 + 4 + 4 = -2$$


Let
$$x = -3$$
:

$$y=-+\frac{2}{3}(3)4$$

 $y=+24$

$$y=2$$

v=4

$$(-3, 6)$$

Now we will practice rewriting equations in the form Ax + By = C to their equivalent y = mx + bform.

EXAMPLE: Solve for *y*: x + 4y = -6

$$x + - + = - - (x)$$

$$4y x$$

$$6$$

$$4y = - - x 6$$

$$4 x$$

$$6 -y$$

$$= - - -$$

$$4 4 4$$

$$1 3$$

$$y = -x - - -$$

$$4 2$$
Add -x to both sides

Divide each term by 4

EXAMPLE: Solve for
$$y$$
: $-2x - 4y = 8$

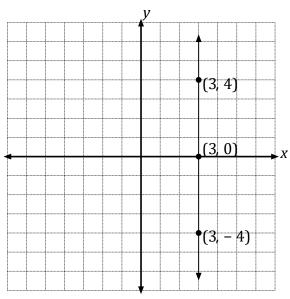
$$- + - = +2x2x \ 4y$$

$$2x8$$

$$- = +4y \ 2x$$

$$8$$

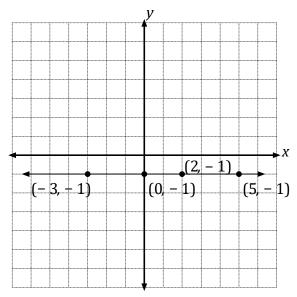
$$-4 \ 2x \ 8^{y} = +$$


$$-4 \ -4 \ -4 \ -4 \ y = -$$

$$\frac{1}{2}$$

$$x \ -2$$
Divide each term by -4

EXAMPLE: Graph the equation x = 3.


x	y
3	-4
3	-2
3	0
3	2
3	4

EXAMPLE: Graph the equation y = -1.

NOTICE that this equation does not mention x. This equation could be written as $0 \cdot x y + = -1$. In this case no matter what value x has, because x is multiplied by 0, y will always be -1. This graph will be a **horizontal line** through the point where y = -1.

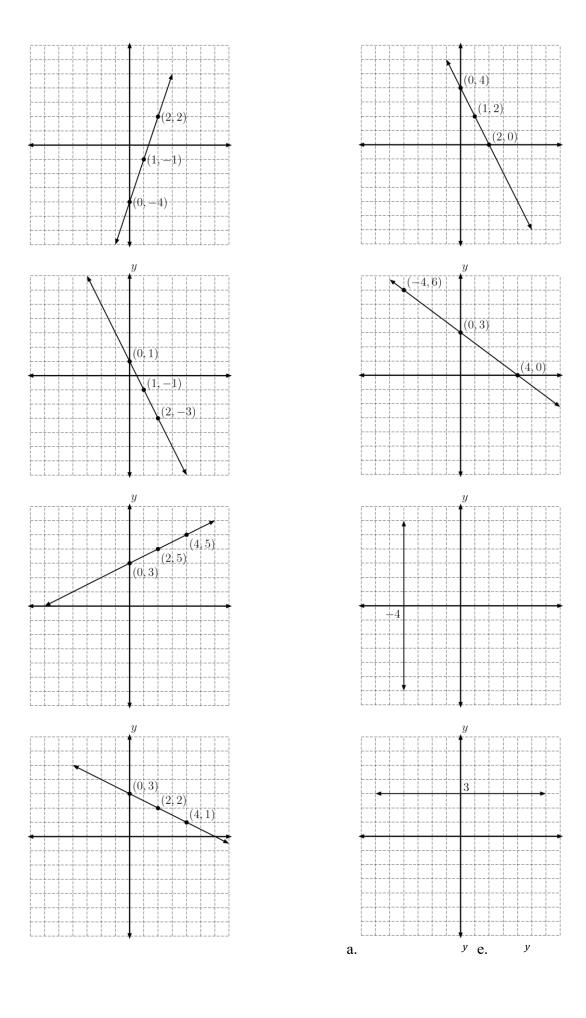
x	у
-3	-1
-1	-1
0	-1
2	-1
5	-1

PRACTICE

Graph the lines of the following equations. Find at least three ordered pairs associated with each line.

a.
$$3x - y = 4$$

e.
$$2x + y = 4$$


b.
$$2x + y = 1$$

f.
$$3x + 4y = 12$$

b.
$$2x + y = 1$$

c. $y = 2x + 3$ g. $x = -4$

d.
$$y=-+\frac{1}{2x}3$$

h.
$$y = 3$$

XX

b.f.

XX

c.g.

XX

d.h.

xx