The Quadratic Formula

Using the quadratic formula, we can solve all quadratic equations.

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b_2 - 4ac}}{2a}$

Solve the equations $6x-1=x^2$

First we put the equation in **standard form** by subtracting x^2 from each side.

$$-x^2 + 6x - 1 = 0$$

We will use the quadratic formula: $x = \frac{-b \pm b_2 - 4ae}{b_2 - 4ae}$, where a = -1, b = 6, c = -1.

$$-6 \pm \sqrt{()6^{2} - (4)(1)(1)} - \frac{-2(1) - (4)(1)(1)}{2}$$

Substitute a = -1, b = 6, c = -1 into the formula. Place the parentheses on the numbers to avoid making mistakes on "signs" Simplify.

Simplify the radical part, using the fact that
$$32 = 16 \cdot 2 = 42$$
.

 $-\frac{6+4\sqrt{2}}{2}$
 $-\frac{6}{2}$
or $\pm \frac{42}{2}$
Factor the numerator (the numerator). -2 is a factor of both terms in

Cancel the common factor of
$$-2$$
 from the numerator and denominator.

$$\begin{array}{c}
-23 \\
2 \\
3 + 2\sqrt{2}
\end{array}$$
There are two distinct solutions.

Note: the fact that
$$b^2 - 4ac$$
 is not equal to a perfect square indicates that it is not possible to solve this equation by factoring.

Exercises: Solve the equations using quadratic formula.

1.
$$x^2 + - = 2240x$$
 2. $2xx(-=3)$ 2 **3.** $\frac{1}{x^2} + \frac{3}{x} - = 20$ **4.** $7x^2 + = 42x$

Answers:

1.
$$\{4,-6\}$$
 2. $\Box\Box \underline{3} \ \underline{13} \pm \Box\Box$ **3.** $\{-4,1\}$ **4.** $\Box\Box \underline{1} \ \underline{3} \ \underline{3} \pm \underline{i}\Box\Box$