The Quadratic Formula

Using the quadratic formula, we can solve all quadratic equations.

If $a x^{2}+b x+c=0$, then $x=-b \pm \sqrt{b_{2}-4 a e}$
2a
Solve the equations $6 x-1=x^{2}$
First we put the equation in standard form by subtracting x^{2} from each side.
$-x^{2}+6 x-1=0$

We will use the quadratic formula:

2a

$$
\begin{aligned}
& -6 \pm \sqrt{() 6^{2}-(4)(1)(1)-} \\
& \frac{=^{6}+\sqrt{36-4}^{-2(1)-}}{n^{2}} \\
& \text { Substitute } \boldsymbol{a}=\mathbf{- 1}, \boldsymbol{b}=\mathbf{6}, \boldsymbol{c}=-\mathbf{1} \text { into the formula. Place } \\
& \text { the parentheses on the numbers to avoid making } \\
& \text { mistakes on "signs" } \\
& \text { Simplify. } \\
& \frac{_^{6}+\sqrt{32}}{2} \text { Simplify the radical part, using the fact that } 32=16 \cdot 2=42 . \\
& =\frac{6_{+}+42}{-^{2}} \quad \frac{-6}{-2} \sqrt{\text { numerator). }} \quad \text { or } \pm \frac{42}{} \text { Factor the numerator (the } \\
& \text {-2 }
\end{aligned}
$$

$\xrightarrow[\underbrace{2}(\underset{22}{ })]{2}$ Cancel the common factor of -2 from the numerator and denominator.
$3 \pm 2 \sqrt{2} \quad$ There are two distinct solutions.
Note: the fact that $b^{2}-4 a c$ is not equal to a perfect square indicates that it is not possible to solve this

$$
3+2 \sqrt{2} \text { and } 3-2 \sqrt{2} \quad \text { equation by factoring. }
$$

Exercises: Solve the equations using quadratic formula.

1. $x^{2}+-=2240 x$
2. $2 x x(-=3)$
2
3. $\frac{1}{x^{2}}+\frac{3}{-3} x-=20$

Answers:

-2
$07 \square$

