Multiplying Square Roots

Objectives: 1. to multiply a monomial numerical radical expression by another monomial numerical radical expression
2. to multiply a monomial numerical radical expression by a binomial containing numerical radicals

Using the Product Property of Square Roots, we can multiply $\sqrt{2} \sqrt{3}=6$
Since the number 6 does not contain any factor that is a perfect square other than " 1, ," this is simplified.

If we multiply $3 \sqrt{6} \sqrt{\text { we }}$ get 18 , $\sqrt{\text { which }}$ must then be simplified because 18 contains the factor 9 , which is a perfect square. Continuing,

$$
\begin{aligned}
\sqrt{3} \sqrt{6} & =\sqrt{18} \\
& =\sqrt{9} \sqrt{2} \\
& =3 \sqrt{2}
\end{aligned}
$$

Example 1: $\quad \sqrt{5} \sqrt{5}=\sqrt{25}$
Also, keep in mind what a square root is. The itself, yields

$$
=5
$$ square root of 5 is that number, which when multiplied by 5 . That is, $5 \cdot 5=5 . \quad \sqrt{ } \sqrt{ }$

Example 2: $\quad \sqrt{6} \sqrt{5}=\sqrt{90}$

$$
\begin{aligned}
& =\sqrt{9} \sqrt{6} \\
& =3 \sqrt{10}
\end{aligned}
$$

Example 3: $\quad \sqrt{7} \sqrt{8}=\sqrt{196}$

$$
=14
$$

When we multiply a monomial times a polynomial, we distribute the monomial to each term in the polynomial. Therefore,

$$
\begin{aligned}
\sqrt{2}(\sqrt{3}+\sqrt{6}) & =\sqrt{2} \sqrt{3}+\sqrt{2} \sqrt{6} \\
& =\sqrt{6}+\sqrt{12} \\
& =\sqrt{6}+\sqrt{43} 3 \\
& =\sqrt{6}+2 \sqrt{3}
\end{aligned}
$$

This is the simplified answer. Remember that you cannot add or subtract unlike radicals.

Example 4: $\quad \sqrt{3}(\sqrt{21}+\sqrt{3})=\sqrt{3} \sqrt{21}+\sqrt{3} \sqrt{3}$

$$
\begin{aligned}
& =\sqrt{63}+\sqrt{9} \\
& =\sqrt{9} \sqrt{7}+\sqrt{9} \\
& =3 \sqrt{7}+3
\end{aligned}
$$

Example 5: $\quad \sqrt{2}(\sqrt{2}-\sqrt{5})=\sqrt{2} \sqrt{2}-\sqrt{2} \sqrt{5}$

$$
\begin{aligned}
& =\sqrt{4}-\sqrt{10} \\
& =2-\sqrt{10}
\end{aligned}
$$

Example 6: $\quad \sqrt{3}(\sqrt{27}-\sqrt{12})=\sqrt{3} \sqrt{27}-\sqrt{3} \sqrt{12}$

$$
\begin{aligned}
& =\sqrt{81}-\sqrt{36} \\
& =9-6 \\
& =3
\end{aligned}
$$

Exercises:

$$
\begin{aligned}
& \sqrt{9} \sqrt{4} \\
& 1 . \\
& \sqrt{8} \sqrt{32} \\
& 2 . \\
& \sqrt{6} \sqrt{10} \\
& 3 . \\
& \sqrt{27} \sqrt{50} \\
& \text { 5. 5. } \sqrt{5}(\sqrt{3}+\sqrt{7}) \quad 6.6 \text {. } \\
& \sqrt{7}(\sqrt{10}+\sqrt{21}) 7 . \\
& \sqrt{3}(\sqrt{24}-\sqrt{3}) \quad 8 . \\
& \sqrt{8}(\sqrt{6}+\sqrt{18}) \quad 9 . \\
& \sqrt{5}(\sqrt{15}-\sqrt{10}) \quad 10 . \\
& \sqrt{2}(\sqrt{8}-\sqrt{32}) \\
& \text { 1. } 6 \\
& \text { 2. } 16 \\
& \text { 3.4. } 2 \sqrt{15} \\
& \text { 4. } 15 \sqrt{6} \\
& \sqrt{15}+\sqrt{35} \\
& \text { 7. } \sqrt{70}+7 \sqrt{3} \\
& \text { 8. } \quad 6 \sqrt{2}-3 \\
& \text { 9. } 4 \sqrt{3} 42 \\
& \text { 10. } 5 \sqrt{3}-5 \sqrt{2} \\
& \text { - } 4
\end{aligned}
$$

