Solving Radical Equations

Radical equations are equations contain radical expressions. The radical equations we are going to solve are mainly square root equations and cubic root equations.

Example \#1: Solve $\quad \sqrt{ }=8$
Solution:
The first thing we need to do to solve radical equations is to remove the radical (nth roots).

To remove the square root on the left side, we
$\sqrt{x}=8 \quad$ will need to square both sides of the equation.

$$
\begin{aligned}
&(\sqrt{x})^{2}=() 8^{2} \quad \text { Simplify each side of the equation. } \\
& x=64
\end{aligned}
$$

$$
\sqrt{64} 8=88=\sqrt{ } \text { Check the answer. } x=64 \text { is the }
$$ solution.

Example \#2: Solve $2 \sqrt{53 x-}=$ Solution:

This equation looks a little different than the previous one. The radicand (the expression under the radical sign) of the previous equation is x. The radicand of this equation is $25 x-$. But, as long as the radical term is isolate, we can follow the same steps to solve the equation as mentioned above.

To remove the square root on the left side, we $253 x-=$ $\sqrt{\text { will need to square both sides of the equation. }}$
$(\sqrt{25 x-}=))^{2}() 3^{2}$ Simplify each side of the equation.

$$
\begin{gathered}
259 x-=214 x= \\
x=7
\end{gathered}
$$

2753 ()- = Check the answer. x

$\sqrt{93}=33=\sqrt{ } \quad=7$ is the solution.

Example \#3: Solve $2 \sqrt{8 x+=x}$ Solution:

To remove the square root on the left side, we $28 x+=x$
$\sqrt{\text { b }}$ will need to square both sides of the equation.

$$
(\sqrt{28 x+})^{2}=() x^{2} \quad \text { Simplify each side of the equation. }
$$

Solve for x.
$28 x+=x^{2}$
$x^{2}--=280 x$
$(x-4)(x+=2 \quad 0) \quad$ one side of the equation equal to zero. Then

$$
x=4 \text { or } x=-2
$$

$\sqrt{2484(})+=\quad$ We have to check the solutions to see if they work.

$$
\sqrt{16} 4=
$$

$$
\begin{array}{cl}
44=\checkmark & \begin{array}{l}
\text { When substitute } 4 \text { into the equation, we } \\
\text { receive a true statement. Therefore } 4 \text { is a solution. } \\
\sqrt{28(-+}=-)
\end{array}
\end{array}
$$

$\sqrt{4}=-2$ When substitute -2 into the equation, the result is not a true
statement. So - 2 is not a

$$
2=-2 X \quad \text { solution. }
$$

$x=4$ is the solution

Example \#4: Solve $\sqrt[4]{-+=x} 58$
Solution:
The radical term in this equation $4-x$ is not isolated (not by itself). So we have to isolate (remove +5) the radical term before we can follow the same steps to solve the equation as mentioned above.
$\sqrt[4]{+}=x 58 \quad$ To remove +5 on the left side, we will need to subtract 5 on 4-$\sqrt{+-}=-x 5585$ both sides of the equation.

Example \#5: Solve $\sqrt{4-=}-y$ y 2
Solution:

$$
\begin{array}{ll}
(\sqrt{4-y})^{2}=-(y 2)^{2} & \begin{array}{l}
\text { The radical is isolated. We will need to square both sides of } \\
\text { the equation to remove the square root on the left side. }
\end{array} \\
4-=-y(y 2)(y-2) & \\
4-=-+y y^{2} 4 y 4 y^{2}- & \text { We need to FOIL the right side and simplify the equation. } \\
=3 y 0, y y(-=3) 0 y=0 & \text { Solve for } y . \\
\text { or } y=3 &
\end{array}
$$

$$
\begin{aligned}
& 4002-=-() \quad \text { We have to } \\
& \sqrt{4}==-22 \times \quad y \\
& \sqrt{332-}=-() \quad \text { =3is the solution. } \\
& \sqrt{111=}=\sqrt{ } \quad
\end{aligned}
$$

$\sqrt{4-}=x 3$ Now the radical is isolated. To remove the square root on the $(4-x)_{2}$
$=() 3_{2} \quad$ left side, we will need to square both sides of the equation.
$4-=x 9 \quad$ Simplify each side of the equation.
$x=-5 \quad$ Solve for x.
$\sqrt{4--=(} 53) \quad$ We have to check the solution to see if it works.
$\sqrt{9} 3=\quad x=-5$ is the solution.
$33=\sqrt{ }$

Example \#6: Solve $\quad 3 \times=-4$ Solution:

The first thing we need to do to solve this radical equation is to remove the radical (nth roots).
$(\sqrt{x})^{3}=-(4)^{3} \quad$ The radical is isolated. We will need to cube both sides of $x=-64$ the equation to remove the cubic root on the left side.
\checkmark We have to check the solution to see if it works. -$\sqrt{=-64} 4 x=-64$ is the solution.
3

Example \#7: Solve $\sqrt[3]{x+=10} 4$ Solution:
$\sqrt[3]{x+=10} 4$ The radical is isolated. We will need to cube both sides $\left(3_{3} x+10\right)_{3}$
$=\sqrt{() 4_{3}}$ of the equation to remove the cubic root on the left side.

$$
x+=1064 x=54
$$

Exercises: Solve the following radical equations

1. $\sqrt{3 y}-=15$
2. $\sqrt[2]{x-=}=-42$
3. $x-=1 \sqrt{59 x}-$
4. $\sqrt{d}+=6 d$
5. $x \sqrt{=-1} \times 7$

Answers:

1. $\left\{\begin{array}{lllll}\} 12 & \text { 2. }\{-4\} & \text { 3. }\{5,2\} & \text { 4. }\left\{\begin{array}{ll}\} & \text { 5. }\{ \end{array}\right\} 10\end{array}\right.$
