Solving Equations With Parentheses

When solving equations containing parentheses, we must remove the parentheses by using the Distributive Property before we can solve. Removing parentheses will often give like terms which can be combined.

EXAMPLE:

$$9x - 3(2x - 1) = 15$$
 Use the Distributive Property to remove the parentheses. $9x - 6x + 3 = 15$ Combine like terms.

$$3x + 3 = 15$$

x = 4

$$3x + 3 + (-3) = 15 + (-3)$$
 Add the opposite of 3 to both sides.

$$3x = 12$$
 Combine like terms on both sides.

$$- \times 3x = 12 \times -$$
 Multiply by the reciprocal of 3.

CHECK:
$$9(4) - 3[2(4) - 1] = 15$$
 Note: Use order of Operation to simplify $36 - 3[8 - 1] = 15$ $36 - 3[7] = 15$

$$36 - 21 = 15$$

 $15 = 15$ TRUE

EXAMPLE:

$$5 - 1(9 - 6x) = 2x - 2$$

-4 + 4x = -2

4x = 2

$$5 - 9 + 6x = 2x - 2$$
 Use the Distributive Property to remove the parentheses.

Combine like terms on both sides.

$$-4 + 6x = 2x - 2$$
 Combine like terms.

$$-4 + 6x + (-2x) = -2x + 2x - 2$$
 Add the opposite of $2x$ to both sides combine like terms.

$$-4 + 4 + 4x = -2 + 4$$
 Add the opposite of -4 to both sides.

$$x = \frac{1}{4}$$
 Reduce fraction.

CHECK: 5 - 222 9 - 6 × 222 _12 222 = 2 × 222 _12 222 - 2

Some equations have parentheses inside brackets. With these problems we must start from the inside and work our way out.

EXAMPLE:

CHECK:
$$-3[x + 4(x + 1)] = x + 4$$
$$-3[-1 + 4(-1 + 1) = -1 + 4$$
$$-3[-1 + 4(0)] = -1 + 4$$
$$-3[-1 + 0] = -1 + 4$$
$$-3[-1] = -1 + 4$$
$$3 = 3 \quad \text{TRUE}$$

EXERCISES: Solve and check.

KEY:

1.
$$12y - 2(4y - 6) = 28$$
 1. $y = 4$

2.
$$10x + 1 = 2(3x + 5)$$
 2. $x =$

3.
$$3a - 7 = 5(2a - 3) + 4$$
 3. $a =$

4.
$$4(x-2)+2=4x-2(2-x)$$
 4. $x=-1$

5.
$$2[y - (4y - 5)] = 3y + 4$$
 5. $y = _$

7.
$$3(a-5)-5a=2a+9$$
 7. $a=-6$

8.
$$3[4-2(x-2)] = 3(2-4x)$$
 8. $x = -3$