Solving Equations in the Form ax + b = c

In equations of the form ax + b = c (read as "*a* times *x* plus *b* equals *c*"), *x* is a variable which represents an unknown quantity and *a*, *b* and *c* are constants.

EXAMPLES: ax + b = c

$$3x^{+} = 410$$

- = 5x
12
18 4m
+ = 2 2

_

Our goal in solving these equations is to simplify the equation to the point where we have a variable equal to a constant.

These equations will require us to use both the Addition Property of Equations and the Multiplication Property of Equations.

3x + 4 = 10**EXAMPLE: Solve:** $3x + 4 + (-4) = 10 + (-4) \leftarrow \text{Add the opposite of 4 to both sides.}$ 3x = 61 $\frac{1}{3} \times 3x = 6 \times \frac{1}{3} \leftarrow$ Multiply both sides by the reciprocal of 3. $1x = \frac{6}{3}$ x = 2**CHECK:** 3x + 4 = 103(2) + 4 = 106 + 4 = 1010 = 10 TRUE -5y - 12 = 18**EXAMPLE: Solve:** -5y 12 + 12 = 18 + 12 \leftarrow Add the opposite of 12 to both sides. -5y = 30 $\frac{1}{5} \times (-5y) = 30 \times -\frac{1}{5} \leftarrow \text{Multiply by the reciprocal of } -5.$ $1y = -\frac{30}{5}$ y = 6

CHECK:	-5y - 12 = 18		
	-5(-6) - 12 = 18		
	$30^{-}12 = 18$		
	18 = 18 TR	UE	
	3	<u>1</u>	
EXAMPLE: Solve	4 m + 2 = 3	= 2	
	$\frac{3}{4}m+2+(-2)=$	$=\frac{1}{2}$	
	$\frac{3}{4}$	$\frac{3}{2}$	
	4 m = -	-2	
	1 3	+(2) \leftarrow Add the opposite of 2 to both side	es.
	$\frac{4}{3} \times \frac{3}{4}m$	$=\frac{-\frac{3}{2} \times \frac{7}{3}}{4}$ \leftarrow Multiply by the reciprocal of $\frac{3}{4}$	
		$\frac{12}{6}$	
	1m = -	6	
	m = -2	2	
CHECK: $m + 2 =$	<u>3</u> <u>1</u>		
CHECK. $m + 2 =$	4 2	1	
	$\frac{3}{2} - \frac{4}{4} ($	(1 - 2) + 2 =	
	$\frac{2}{6}$ 1		
	$-\frac{1}{4} + 2 = \frac{1}{2}$		
	$\frac{3}{-2} + \frac{4}{2} = \frac{1}{2}$		
	$\frac{1}{2} = \frac{1}{2}$		
EXERCISES. Sol	2 2 ve and check	TRUE KEV.	
$1.5m^{-}6 = 0$	ve and eneck.	1. m = 3	
1. <i>Sm</i> 0 – 9		2. $x = 2$	
2.4 $3x = 2$			
3. $3y^2 21 = 0$	5	3. $y = 7$	
4. $8z + 13 = 34.z =$	$= -\frac{3}{4}$		
$-\frac{3}{4} = \frac{13}{4}$	5 0		
5. $2n$ 4 4	5. $n = 2$	6 r = 28	
6 - 6 - 1 A		$0. \lambda = 20$	
0 0 - 1 4			
7. $8y$ 3 = 19		7. $y = 2$	

8. $\frac{2}{3}x^{-}1=5$ 9. $4=2^{-}3a$ 10. $\frac{2}{5}y+4=6$ 8. x=99. $a=-\frac{2}{3}$ 10. y=5

2