Solving Equations in the Form ax + b = cx + d

In equations in the form ax + b = cx + d, ax and cx are variable terms and b and d are constants. **EXAMPLES:** ax + b = cx + d

$$6x + 2 = x + 17$$

 $8y = 3y + 20$ (Note: *b* is zero)
 $n - 2 = -3n + 6$

NOTE that 8y = 3y + 20 still fits the form as 8y could be written as 8y + 0 = 3y + 20.

Our goal in solving these equations is to simplify the equation to the point where we have a variable equal to a constant.

These equations will require us to use both the Addition Property of Equations and the Multiplication Property of Equations.

EXAMPLE: Solve: 6x + 2 = x + 17

We must first get the variable terms on the same side of the equation.

-x + 6x + 2 = -x + x + 17 5x + 2 = 17 5x + 2 + (-2) = 17 + (-2) 5x = 15	Add the opposite of x to both sides Combine like terms on both sides Add the opposite of 2 to both sides Combine like terms on both sides
$1 \qquad 1 \\ - \times 5x = 15 \times - 5 \\ 5 \qquad 5 \\ 1x = 3 \\ x = 3$	Multiply both sides by the reciprocal of 5
CHECK: $6(3) + 2 = 3 + 17$ 18 + 2 = 3 + 17 20 = 20 TRUE	
SOLVE: $8y = 3y + 20$ 8y + (-3y) = -3y + 3y + 20 5y = 20 1 $- \times 5y = 20 \times -$ 5	Add the opposite of 3 <i>y</i> to both sides Combine like terms on both sides Multiply both sides by the reciprocal of 5

$$1y = 4$$

y = 4
CHEC
K: 8(4)
= 3(4) +
20
32 = 12 + 20
32 = 32 TRUE

EXAMPLE:
$$n - 2 = -3n + 6$$

 $3n + n - 2 = -3n + 3n + 6$ Add the opposite of -3n to both sides
 $4n - 2 = 6$ Combine like terms on both sides
 $4n - 2 + 2 = 6 + 2$ Add the opposite of -2 to both sides
 $4n = 8$ Combine like terms on both sides
 1
 $- \times 4n = 8 \times -$ Multiply both sides by the reciprocal of 4
 4
 $1n = 2$
 $n = 2$
CHECK: $n - 2 = -3n + 6$
 $2 - 2 = -3(2) + 6$
 $0 = -6 + 6$
 $0 = 0$ TRUE

NOTE that in some equations you must combine like terms before you begin to solve.

$$3x + 4 - 5x = 2 - 4x$$

$$-5x + 3x + 4 = 2 - 4x$$

$$-2x + 4 = 2 - 4x$$

Now this is in the $ax + b = cx + d$ form.
Can you finish it? The solution is -1.

EXERCISES: Solve and Check.

- 1. 9x 10 = 3x + 2 6. 5a + 7 = 2a + 7
- 2. -5y 3 = 2y + 18 7. 3 2x = 15 + 4x
- 3. 4x 2 = -16 3x 8. 8y 2 = 4y 5
- 4. -10a + 4 = -a 14 9. 5 7a = 2 6a
- 5. 6x 1 = 2x + 2 10. 10y 3 = 3y 1

<u>KEY</u>:

1.
$$x = 2$$

2. $y = -3$ 7. $x = -2$
3. $x = -2$
4. $a = 2$ 9. $a = 3$
5. $x = 4$
10. $y = -7$
7