Solving Equations in the Form ax = b

In equations of the form ax = b (*a* times *x* equals *b*), *x* is a variable which represents an unknown number and *a* and *b* are constants.

EXAMPLES: *ax b*=

$$3x = 12$$
$$-4y = -16$$
$$x = 9$$

To solve an equation we must find the value of the variable so that the original equation is true when the variable is replaced with that value.

EXAMPLE: 3 12*x*=

If x is replaced with 4, the equation is true.

$$3x = 12$$

3(4) 12=
12 = 12 TRUE

To solve these equations we must use the Multiplication Property of Equations. **NOTE** that the final goal in solving the equation is to have a statement where the variable is equal to the constant. The solution is the constant.

SOLVE: 5x = 75

To get x by itself on one side of the equation we must change the coefficient of x from 5 to 1. We will do this by multiplying **both sides** of the equation by the **reciprocal** of 5.

$$5x = 75$$

$$\frac{1}{5} \times 5x = 75 \times \frac{15}{55x} = \frac{75}{5}$$

Reduce the fractions and we have:

1x = 15

Multiplying a number by one does not change the number.

1x = 15 is the same as x = 15

CHECK:

5x = 75 5(15) = 75 75 = 75 TRUE 4xEXAMPLE: Solve: 4x = 16 5 $4 \text{ times } x, \text{ divided by 5 is the same as } \frac{4}{5} \text{ times } x.$ $4x = \frac{4}{5}$ $4 \text{ times } x, \text{ divided by 5 is the same as } \frac{5}{5} x$ 5Multiply both sides by the reciprocal of $\frac{4}{5}$ $\frac{5}{4} = \frac{4}{5} \times x = \frac{16}{1} = \frac{5}{4} \times \frac{20}{20x} = \frac{80}{4}$ 1x = 20 x = 20

CHECK:

 $\frac{4}{5}x = 16$ $\frac{4(20)}{5} = 16$ $\frac{80}{5} = 16$ 16 = 16TRUE

In some problems it is necessary to combine like terms before solving the equation.

EXAMPLE: 8*y*-6*y*=14

8*y* and 6*y* are like terms on the same side of the equals sign. We must combine variable terms so that there is only one variable term before we begin to solve.

2

$$8y^{-} 6y^{-} 14$$
 Combine like terms
 $2y = 14$
 $\frac{1}{2} \times 2y = 14 \times \frac{1}{2}$ Multiply both sides by the reciprocal of 2
 $1y = \frac{14}{2}y = 7$
Simplify

NOTE: Be very careful when the coefficient is negative and remember that the reciprocal of a negative number is also negative.

Negative coefficient

$$-4x = 12$$

$$1 \qquad ? 1?$$

$$--= -(4)x \quad 12? \quad ...?$$

$$4 \qquad ? 4? \quad x = -3$$

EXERCISES: Solve and check.

1.
$$-3x = 18$$

2. $\frac{4}{9x} = 12$
3. $7y = 21$
4. $-32 = 8n$
5. $-12x = -144$
6. $\frac{-}{3} = 15$
3. $\frac{2n}{3}$
7. $\frac{2n}{-3} = 2$
8. $5x + 3x = 24$
9. $2n - 6n = 28$
10. $-\frac{2}{5x} = -\frac{5}{8}$
KEY:

1.
$$x = -6$$
 6. $x = 45$

- 2. x = 277. n = 33. y = 3 8. x = 3
- 4. $n^{=}-4$ 9. $n^{=}-7$
- 5. $x = 12 \ 10.$ $x = \frac{25}{16}$

3