Solving Equations in the Form $\mathbf{a x}=\mathbf{b}$

In equations of the form $a x=b$ (a times x equals b), x is a variable which represents an unknown number and a and b are constants.

EXAMPLES: $a x b=$

$$
\begin{aligned}
3 x & =12 \\
-4 y & =-16 \\
x & =9
\end{aligned}
$$

To solve an equation we must find the value of the variable so that the original equation is true when the variable is replaced with that value.

EXAMPLE:
 $312 x=$

If x is replaced with 4, the equation is true.

$$
\begin{aligned}
& 3 x=12 \\
& 3(4) 12= \\
& 12=12 \text { TRUE }
\end{aligned}
$$

To solve these equations we must use the Multiplication Property of Equations. NOTE that the final goal in solving the equation is to have a statement where the variable is equal to the constant. The solution is the constant.

SOLVE: $\quad 5 x=75$
To get x by itself on one side of the equation we must change the coefficient of x from 5 to 1 . We will do this by multiplying both sides of the equation by the reciprocal of 5 .

$$
\begin{aligned}
5 x & =75 \\
\frac{1}{5} \times 5 x & =75 \times \\
\frac{15}{5} \frac{75}{5} x & =\frac{75}{5}
\end{aligned}
$$

Reduce the fractions and we have:

$$
1 x=15
$$

Multiplying a number by one does not change the number.

$$
1 x=15 \text { is the same as } x=15
$$

CHECK:

$$
\begin{aligned}
& 5 x=75 \\
& 5(15)=75 \\
& 75=75 \\
& \quad \text { TRUE }
\end{aligned}
$$

$4 x$
EXAMPLE: Solve: __ ${ }^{=} 16$
5
4 times x, divided by 5 is the same as 5 times x.
The first thing we will do is rewrite $\frac{4 x}{5}$ as $\frac{4}{5}$.
Multiply both sides by the reciprocal of $\frac{4}{5}$

$$
\begin{gathered}
\frac{5}{4} \frac{4}{5} \times x=\frac{16}{1} \frac{5}{4} \times \\
\frac{20}{20}=\frac{80}{4} \\
1 x=20 \\
x=20
\end{gathered}
$$

CHECK:

$$
\begin{gathered}
\frac{4}{5} x=16 \\
\frac{4(20)}{5}=16 \\
\frac{80}{5}=16 \\
16={ }_{16} \\
\text { TRUE }
\end{gathered}
$$

In some problems it is necessary to combine like terms before solving the equation.

EXAMPLE:

$$
8 y-6 y=14
$$

$8 y$ and $6 y$ are like terms on the same side of the equals sign. We must combine variable terms so that there is only one variable term before we begin to solve.

2

$$
\begin{array}{cl}
8 y-6 y=14 & \text { Combine like terms } \\
2 y=14 & \\
\begin{array}{c}
\frac{1}{2} \times 2 y=14 \times \frac{1}{2} \\
\text { Multiply both sides by the reciprocal of } 2 \\
1 y= \\
\text { Simplify }
\end{array}
\end{array}
$$

NOTE: Be very careful when the coefficient is negative and remember that the reciprocal of a negative number is also negative.

Negative coefficient

$$
\begin{gathered}
-4 x=12 \\
1 \\
--=-(4) x \quad 12 \text { 回 - }{ }^{2} \text { 回 } \\
4
\end{gathered}
$$

EXERCISES: Solve and check.

1. $\quad-3 x=18$
2. $\quad \frac{4}{9} x=12$
3. $7 y=21$
x
4. $\quad-32=8 n$
5. $-12 x=-144$
6. $-{ }^{=} 15$
3
$2 n$
7.

$=2$
3
10. $-\frac{2}{5} x=-\frac{5}{8}$

KEY:

1. $x={ }^{=} 6$ 6. $\quad x^{=} 45$
2. $x^{=} 277 . \quad n^{=} 3$
3. $y=38 . \quad x=3$
4. $\quad n^{=-} 4 \quad$ 9. $\quad n^{=-} 7$
5. $x=1210 . \quad x=\frac{25}{16}$
