Solving Equations in the Form $\mathbf{x + a}=\mathbf{b}$

To solve an equation means to find the value of the variable so that the original equation is true when the variable is replaced with the value.

EXAMPLE: $\quad x+3=8$

$$
\text { If } x \text { is replaced with } 5 \text {, the equation is true. } \quad \begin{aligned}
& x+3=8 \\
& \downarrow \\
& 5+3=8 \\
& 8=8 \text { which is true }
\end{aligned}
$$

To solve equations, we will use the following properties:

Addition Property of Equations.

The same number can be added to each side of an equation without changing the solution.

$$
\text { If } a=\mathrm{b} \text {, then } a+c=b+c \text { and the solution stays the same. }
$$

Addition Property of Opposites

The sum of a term and its opposite is zero.

$$
\begin{aligned}
& 5+(-5)=0 \\
& -4+4=0
\end{aligned}
$$

$$
2 \quad(2) \mid 0
$$

$$
3 \mid(-3)=+
$$

$$
a+(-a)=0
$$

Addition Property of Zero
The sum of a term and zero is the term

$$
\begin{gathered}
5+0=5 \\
0+(-4)=-4 \\
a+0=a
\end{gathered}
$$

In equations of the form $x+a=b, x$ is a variable which represents an unknown number and a and b are constants.

EXAMPLES: $\quad \underline{x+a=b}$

$$
\begin{gathered}
x+3=8 x \\
-5=-6
\end{gathered}
$$

NOTE that $x-=-5 \quad 6$ still fits the form $x+a=b$, though the operation is subtraction and not addition. Remember that subtraction can be rewritten as addition of the opposite.

$$
\begin{gathered}
x+a=b \\
x-5=-6 \\
\downarrow \\
\downarrow \\
x+(-5)=-6
\end{gathered}
$$

Our final goal in solving an equation is to have a statement where the variable is equal to the constant. The solution to the equation is the constant.

SOLVE: $\quad x+12=-4$
To get x by itself on one side of the equation we must remove 12 from the left side of the equation. To do this we will add the opposite of 12 to both sides of the equation.

$$
\begin{array}{rrrr}
x+12 & =-4 & x \\
+ & 12+(-12)= & -4+(-12) &
\end{array}
$$

Now we will combine like terms: $x+0=-16$
Zero added to any number is the number itself, so $x+0=-16$ is the same thing as $x=-16$.
To check we will replace x with (-16) in the original equation. x

$$
\begin{aligned}
& \begin{array}{c}
+12=-4 \\
\downarrow \\
(-16)+12
\end{array} \underbrace{}_{-4=-4}=-4
\end{aligned}
$$

Be sure you understand each step. Get help if you don't understand.

SOLVE: $\quad x-4=-6$

Since $x-4$ is equivalent to $x+(-4)$, you do not

$$
\begin{aligned}
& x+(-4)=-6 \\
& x+(-4)+4=-6+ \\
& 4 x+0=-2 x=-2
\end{aligned}
$$

step mentally!
Add the opposite of -4 to both sides.

CHECK: $-2-4=-6$

EXAMPLE:

$$
\begin{aligned}
& \frac{3}{x}-\frac{1}{=} \\
& 8 \quad 2 \\
& 3313 x \\
& { }_{-}^{+}=\begin{array}{lll}
8 & + & \\
8 & \overline{8}
\end{array} \\
& 13 \\
& x-0=-\mp \\
& 28 \\
& 43 \\
& +\underline{x}= \\
& 88 \\
& x=\quad \frac{7}{8} \quad \text { CHECK: } \\
& \text { Add the opposite of }\left(-\frac{3}{8}\right) \text { to both sides. } \\
& \text { Recall that to add fractions you MUST have a common } \\
& \text { denominator! The LCD is } 8 \text {, so } \\
& \frac{1}{2}+\frac{3}{8}=\frac{1}{2} \cdot \frac{4}{4}+\frac{3}{8}=\frac{4}{8}+\frac{3}{8} \\
& 31 \\
& 731 \\
& 8 \quad 8 \quad 2 \\
& \text { reduce the } \\
& \text { = } \\
& 8 \quad 2 \\
& 11 \\
& \text { - = - TRUE } \\
& 22
\end{aligned}
$$

NOTE that your goal is still to get x by itself by adding the opposite of the constant term to both sides.

EXAMPLE:

$$
\begin{gathered}
-59=+x \\
-5(9) 9(9)+-=+-+x \\
-=14 x
\end{gathered}
$$

CHECK:

$$
-5=9+x
$$

$$
\begin{aligned}
\quad \downarrow & \\
-5 & =9+(-14) \\
-5 & =-5
\end{aligned} \quad \text { TRUE }
$$

EXERCISES: Solve and check.

1. $x-4=11$
2. $m+9=2$
3. $x+7=7$
4. $2=x+7$
5. $9+a=-3$
6. $y+\frac{3}{4}=-\frac{1}{4}$
7. $x+\frac{1}{6}=-\frac{1}{3}$
8. $\frac{4}{9}+a=-\frac{2}{9}$
9. $13=-6+m$
10. $4=-10+y$

KEY:

1. $x=15$
2. $m=-7$
3. $x=0$
4. $x=-5$
5. $a=-12$
6. $y=-1$
7. $x=-\overline{2}$
8. $x=-\overline{3}$
9. $m=19$
10. $y=14$
