Systems of Linear Equations

EXAMPLE

1. Solve for the system of linear equations.

$$4x + 2y = -6$$

$$5x + 5y = 10$$

SOLUTION

4x + 2y = -6 5x + 5y = 10	Multiply the first equation by –5 and multiply the second equation by 2.
	Add the two equations.
-20x - 10y = 30	
$\frac{10x + 10y = 20}{10}$	
-10x = 50 $-10x = 50$	Solve for <i>x</i> .
x = -5	Let $x = -5$ in $4x + 2y = -6$.
4(-5) + 2y = -6	
-20 + 2y = -6	Solve for <i>y</i> .
2y = 14	
y = 7	The solution occurs when $x = -5$, $y = 7$.
	The solution is $(-5,7)$
	The system is <mark>consistent</mark> and

We will eliminate y. independent

system.

EXAMPLE

2. Solve for the system of linear equations.

$$12x - 4y = 20$$
We will eliminate y. $9x - 3y = 5$ Multiply the first equation by -3 and

SOLUTION

multiply the second equation by 4.

Add the two equations.

12x - 4y = 20	
9x - 3y = 5	
·	Since use of the addition method has
	resulted in the case where all of the
-36x + 12y = -60	variables cancel and we are left with a
2	false statement $(0 = -40)$, we know that
$\underline{36x - 12y = 20}$	the system of equations has no solution.
0 = -40	This is an <mark>inconsistent</mark> system.

EXAMPLE

3. Solve for the system of linear equations

$$\begin{array}{rcl} x - & 5y = & 3 \\ 4x + 20y = & -12 \end{array} & \underline{-4x + 20y = & -12} \end{array}$$

SOLUTION

We will eliminate *x*.

$$x - 5y = 3$$
$$-4x + 20y = -12$$

Multiply the first equation by 4.

 $\mathbf{0} = \mathbf{0}$

Add the two equations.

$$4x - 20y = 12$$

Since use of the addition method has resulted in the case where all of the terms cancel on both sides of the equals sign, leaving the true statement 0 = 0, we know that there are infinitely many solutions.

$$\{(x y x,) - =5y 3\}$$

This is a **consistent** and **dependent** system.

Exercises: Solve for the following systems of linear equations

- 1. 3 2x + = -y 1 2 3x = -y 5
- **2.** 5 2x = y 5
 - -104x + = -y8
- **3.** 2 4x = -y 10

5 4x + = y 17

- **4.** 5 2x = y 5
 - -104x + = -y10

5. 3 4x - = y 5

$$- + = -3 4xy 3$$

Answers:

1. (-1,1) **2. 6 3.** (1,3) **4.** $\{(x y x), 5 = 2y 5\}$ **5. 6**