Systems of Linear Equations

EXAMPLE

1. Solve for the system of linear equations.

$$
\begin{aligned}
& 4 x+2 y=-6 \\
& 5 x+5 y=10
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
& 4 x+2 y=-6 \\
& 5 x+5 y=10
\end{aligned}
$$

Multiply the first equation by $\mathbf{- 5}$ and multiply the second equation by 2.

Add the two equations.
$-20 x-10 y=30$
$10 x+10 y=20$
$-10 x=50$
$-10 x=50 \quad$ Solve for x.
$x=-5 \quad$ Let $x=-5$ in $4 x+2 y=-6$.
$4(-5)+2 y=-6$
$-20+2 y=-6 \quad$ Solve for y.
$2 y=14$
$y=7 \quad$ The solution occurs when $x=-5, y=7$.
The solution is $(-5,7)$
The system is consistent and

We will eliminate y. independent
system.

EXAMPLE

2. Solve for the system of linear equations.

$$
\begin{aligned}
12 x-4 y=20 & \text { We will eliminate } \boldsymbol{y} . \\
9 x-3 y=5 & \text { Multinly the first eon }
\end{aligned}
$$

SOLUTION

multiply the second equation by 4.

Add the two equations.

$$
\begin{aligned}
& 12 x-4 y=20 \\
& 9 x-3 y=5 \\
& -36 x+12 y=-60 \\
& 36 x-12 y=20
\end{aligned}
$$

Since use of the addition method has resulted in the case where all of the variables cancel and we are left with a false statement $(0=-40)$, we know that the system of equations has no solution.

This is an inconsistent system.

EXAMPLE

3. Solve for the system of linear equations

$$
\begin{aligned}
& x-5 y=3 \\
&-4 x+20 y= \\
&-12
\end{aligned}
$$

$$
-4 x+20 y=-12
$$

$$
0=0
$$

SOLUTION

$$
\begin{array}{rlrl}
& & \text { We will eliminate } \boldsymbol{x} . \\
x-5 y & = & 3 \\
-4 x+20 y & = & & \text { Multiply the first eq }
\end{array}
$$

Add the two equations.

$$
4 x-20 y=12
$$

Since use of the addition method has resulted in the case where all of the terms cancel on both sides of the equals sign, leaving the true statement $0=0$, we know that there are infinitely many solutions.

$$
\{(x y x,)-=5 y 3\}
$$

This is a consistent and dependent system.

Exercises: Solve for the following systems of linear equations

1. $32 x+=-y 123 x-=-y 5$
2. $52 x-=y 5$
$-104 x+=-y 8$

3. $24 x-=-y \quad 10$
 $54 x+=y 17$

4. $52 x-=y 5$

$$
-104 x+=-y 10
$$

5. $34 x-=y 5$

$$
-+=-34 x y \quad 3
$$

Answers:

1. $(-1,1)$ 2. 6 3. $(1,3)$ 4. $\left\{(x y x,)^{2} 5-=2 y 5\right\} \quad$ 5. 6
