## Converting Units within the Metric System

Calculation within the metric system are based on powers of 10 . Most metric conversions can be done by just moving the decimal point.
The most common metric prefixed are arranged in order from largest to smallest, accompanied by their numerical interpretations:

| kilo <br> $(\mathrm{k})$ | hecto | deka | base unit | deci | centi | milli |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | $(\mathrm{~h})$ | $(\mathrm{da})$ | $(\mathrm{g}, \mathrm{m}, 1)$ | $(\mathrm{d})$ | (c) | $(\mathrm{m})$ |

The main metric units are the meter for length, liter for volume, and gram for mass a represented below by the symbol u for unit:

## Kilo Hector Deka U Deci Centi Milli

## Kathy Had Doubts Until Dudley Converted Metrics

Each term is ten times the value of the next term to the right.

## Examples:

1. Convert 0.85 kiloliters to hectoliters. 2. Convert 785 milligrams to grams.
(liters)

answer: 8.5 hL
(grams)
$k$ h da grdm answer: 0.785 g
2. Convert 3 dekameters to centimeters. 4. Convert 5800 meters to kilometers.
(meters)

answer: 3000 cm

## Converting Units by Dimensional Analysis

1. How many feet are in 30 inches?
( 30 inches) $\cdot\left(\frac{1 \text { foot }}{12 \text { inches }}\right)=2.5$ feet
2. Three yards is how many centimeters?

$$
\begin{aligned}
3 \text { yards } & =(3 \text { yards }) \cdot\left(\frac{3 \text { faet }}{1 \text { yasd }}\right) \cdot\left(\frac{12 \text { inches }}{1 \text { foot }}\right) \cdot\left(\frac{2.54 \text { centimeters }}{1 \text { irach }}\right) \\
& =274.32 \text { centimeters }
\end{aligned}
$$

3. How many radians are in $\mathbf{3}$ complete revolutions?
$(3$ revotutions $) \cdot\left(\frac{2 \pi \text { radians }}{1 \text { revolution }}\right)=6 \pi$ radians
4. A train is traveling at 60 miles per hour. The brakes are applied and the train comes to a complete halt in 30 seconds. Find the rate of deceleration in feet per second squared.

$$
\begin{aligned}
& \mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \quad \text { (the formula to use) } \\
& \mathrm{O}=\left(\frac{60 \text { miles }}{1 \text { hour }}\right)+\mathrm{a} \cdot(30 \text { seconds) } \\
& \mathrm{a}=-\left(\frac{60 \text { miles }}{1 \text { hour }}\right) \cdot\left(\frac{1}{30 \text { seconds }}\right) \\
& \mathrm{a}=-\left(\frac{60 \text { mithes }}{1 \text { mour }}\right) \cdot\left(\frac{1}{30 \text { seconds }}\right) \cdot\left(\frac{5280 \text { feet }}{1 \text { mile }}\right) \cdot\left(\frac{1 \text { hoti }}{60 \text { minutes }}\right) \cdot\left(\frac{1 \text { ming in this equation }}{60 \text { seconds }}\right) \\
& \mathrm{a}=-2.93 \mathrm{t} / \mathrm{s}^{2}
\end{aligned}
$$

5. Liquid mercury has a density of 13.6 gram per milliliter at 20 degrees Celsius. Find the mass in kilograms of 804 liters of mercury at 20 degrees Celsius.
mass $=($ density $) \cdot($ volüme $)$
(replacing the given values into this formula yields)

$$
\begin{aligned}
& =\left(\frac{13.6 \text { grams }}{1 \text { milliliter }}\right) \cdot\left(\frac{804 \text { liters }}{1}\right) \\
& =\left(\frac{13.6 \text { grames }}{1 \text { niltiliter }}\right) \cdot\left(\frac{804 \text { itters }}{1}\right) \cdot\left(\frac{1000 \text { mithiliters }}{1 \text { Hter }}\right) \cdot\left(\frac{1 \text { kilogram }}{1000 \text { gratas }}\right) \\
& =10,934.4 \mathrm{~kg}
\end{aligned}
$$

