FINANCE MATH

1. What type of interest is mentioned?

2. How many deposits or payments?

3. When is the "big money" needed?

NOW - You make a large purchase in the present and pay it off over time.

$$
P=\frac{p m t\left(1-\left(1+\frac{r}{n}\right)^{-n t}\right)}{\left(\frac{r}{n}\right)}
$$

LATER - You will be saving up to have a large amount in the future.

$$
A=\frac{p m t\left(\left(1+\frac{r}{n}\right)^{n t}-1\right)}{\left(\frac{r}{n}\right)}
$$

FINANCE MATH

```
A final Amount (principal + interest)
P}\quad\mathrm{ Principle (initial or beginning amount)
r interest rate (in decimal form)
n # of compounding periods per year
t time (in years)
I Interest
Y
pmt
```

ADB Average Daily Balance
annual yient - is the simple interest rate that
produces the same amount of money in an
account at the end of one year as when the account is subjected to compound interest at a stated rate.

$$
E Y=\left(1+\frac{r}{n}\right)^{n}-1
$$

Be sure to convert your decimal calculator result to a percent.

Rule of 72

$$
\frac{72}{E Y \%}=\text { years to double }
$$

Credit Card Average Daily Balance

$$
A D B=\frac{\text { sum of the daily balances }}{\text { number of days in the billing cycle }}
$$

Credit Card Interest (This is the monthly finance charge on the Average Daily Balance):

$$
I=A D B \times \text { onthly rate } \times 1(\text { month })
$$

or

$$
I=A D B \times \frac{A P R}{12} \times 1(\text { month })
$$

