## W I L LIA M D. LA W, JR LEARNNG COMMONS

## GRAPH THEORY

A graph consists of a finite set of points, called vertices (singular is vertex), and line segments or curves, called edges, that start and end at vertices. An edge that starts and ends at the same vertex is called a loop.

The degree of a vertex is the number of edges at that vertex. A loop connects a vertex to itself so it contributes 2 to the degree of the vertex. A vertex with an even number of edges attached to it is an even vertex. A vertex with an odd number of edges attached to it is an odd vertex.

Two vertices are adjacent if there is at least one edge connecting them.
A path is a sequence of adjacent vertices and the edges connecting them. An edge can be part of a path only once.

## Euler Paths and Circuits

An Euler (pronounced "oil-er") path is a path that travels through every edge of a graph once and only once. An Euler path that starts and ends on the same vertex is called an Euler circuit.

## Euler's Theorem

How many Euler Paths and Circuits? (It is all about the number of odd vertices.)


No odd vertices - at least one Euler path and circuit.

Exactly two odd vertices - at least one Euler path and NO Euler circuit.

More than two odd vertices - NO Euler path or Euler circuit.

## W I LLIAM D. LAW. JR LEARNING COMMONS

A graph is connected if for any two of its vertices there is at least one path connecting them. A connected graph consists of one piece. A graph that is not one piece is called disconnected.
A bridge is an edge that if removed from a connected graph would leave behind a disconnected graph.
A tree is a connected graph with no circuits. It has these properties:

- There is one and only one path joining any two vertices.
- Every edge is a bridge
- A tree with $n$ vertices has $n-1$ edges.

A spanning tree is a subgraph that contains all of a connected graph's vertices, is connected, and contains no circuits.

Use Kruskal's Algorithm to find the minimum spanning tree of a weighted graph. Pick the smallest available edge but avoid creating circuits.

## Hamilton Paths and Circuits

A Hamilton path is a path that passes through each vertex of a graph exactly once. A Hamilton path that starts and ends on the same vertex is called a Hamilton circuit.

A complete graph is a graph that has an edge between each pair of its vertices. A complete graph with $n$ vertices has $(n-1)$ ! Hamilton circuits.

## Traveling salesperson problem

The Brute Force Method involves calculating the weights of all possible Hamilton circuits. It is used to find the Hamilton circuit in a complete weighted graph for which the sum of the weights of the edges is a minimum. That circuit is the optimal solution.
The Nearest Neighbor Method can be used to approximate the optimal solution by continually taking an edge with the smallest weight.

