Φ
 $W|L L| A M D . L A W, J R$
 LEARNING COMMONS SET THEORY

A set is a collection of elements.
An element is a member of a set.
\in read as "...is an element of..."
\notin read as "...is not an element of..."

THREE WAYS TO WRITE SETS

1. The roster method uses set braces and commas to list the elements of a set.
$\{1,2\}$ read as "The set one, two."

- - - read as "and so on"

The ellipsis is three dots used to indicate that a pattern that has been established continues.
$\{2,4,6, \cdots \cdots, 18\}$ denotes the set of even numbers between 1 and 19.
2. Set builder notation uses set braces and commas to list the elements of a set.
$\{\boldsymbol{x} \mid \boldsymbol{x}<\mathbf{0}\}$ read as "The set of all x such that x is less than zero."
3. A Venn diagram is a visual representation of sets using circles and rectangles that show set relationships intersection, union, complement.

THILLIAM D. LAW, JR. LEARNNG COMMONS
 SET THEORY

A cardinal number is a whole number that indicates how many distinct (i.e., unique or different) elements a set contains.
$\mathrm{n}(\mathrm{A})$ read as "the cardinality of set A "
The cardinality of a set is the number of unique elements contained in that set.
\mathbf{A}^{\prime} read as "the complement of A " or "not A " The complement of $\operatorname{set} A$ is the set of all elements in the universal set except those in set A.

〇 read as "intersect", means AND
The intersection of two sets is the set that contains all the elements that the two sets have in common.
\cup read as "union", means OR
The union of two sets is the set that all the elements of the two sets and no others.

U
read as "the universal set"
The universal set contains all elements under consideration.
\varnothing or $\}$ read as "the empty set" or "the null set".

The empty set contains no elements.

