Choosing whether to use binompdf or binomcdf

The following tables are binomial probability distributions for which $\mathbf{n} = \mathbf{6}$ and $\mathbf{p} = \mathbf{0.65}$. The desired probabilities are highlighted.

PDF

Find the probability of *exactly 2* favorable outcomes.

$$P(x=2) = binompdf(6, 0.65, 2) = 0.0951021094$$

X	0	1	2	3	4	5	6
P(x)	.0018	.0205	.0951	.2355	.3280	.2437	.0754

<u>CDF</u>

Find the probability of *less than* 3 favorable outcomes.

Find the probability of *at most* 2 favorable outcomes.

Both of these mean two or less.

$$P(x < 3) = P(x # 2) = P(x=0) + P(x=1) + P(x=2) = binomcdf (6, 0.65, 2) = 0.1174239063$$

x	0	1	2	3	4	5	6
P(x)	.0018	.0205	.0951	.2355	.3280	.2437	.0754

CDF

Find the probability of *more than* 2 favorable outcomes.

Find the probability of *at least* 3 favorable outcomes.

Both of these are the *complement* of two or less.

$$P(x > 2) = P(x \$ 3) = 1 - P(x \# 2) = 1 - binomcdf(6, 0.65, 2) = 0.8825760937$$

x	0	1	2	3	4	5	6
---	---	---	---	---	---	---	---

P(x)	.0018	.0205	.0951	.2355	.3280	.2437	.0754

* Remember that the cumulative sum of ALL probabilities is ONE :

$$P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) + P(x=6) = \boldsymbol{1}$$