CONFIDENCE INTERVAL FOR A PROPORTION

A confidence interval is an interval of plausible values for a population proportion. It is

constructed so that we can state a chosen degree of confidence that the actual value of the parameter will be between the lower and upper endpoints of the interval.

STEP 1. Check for conditions of normality.

- a random sample
- $n(\Phi) > 1O$ and $n(1-\Phi) > 1O$
- N > 1On

STEP 2. Enter data or summary statistics.

STAT > TESTS A: 1-PropZInt

Inpt: Data Stats x: number of "successes" in the sample n: sample size

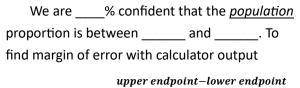
C-Level: degree of confidence

Output screen

1-PropZInt

(lower endpoint , upper endpoint) **b**= sample proportion **n**= sample size

STEP 3. Interpret the confidence interval.



Margin of Error = _____

2

CONFIDENCE INTERVAL MARGIN OF ERROR

STEP 1. Find the 90% z-critical value (z_c) .

2nd VARS (DISTR) **3: invNorm area: 1.9O/2 μ: Ο** δ: 1

invNorm(1.9O/2,O,1) = **1.644853626**

STEP 2. Use 1.645 for z_c and n and \hat{p} to

calculate the

margin of error. $E_{.} = z_{c} * \sqrt{\frac{p}{n}}$

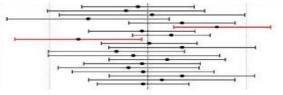
$$\hat{p} = x$$
 and M . $(1-\hat{p})$

n

confidence interval = $\hat{p} \pm M$. E.

Note: Increasing the level of confidence widens the interval giving a larger margin of error. Conversely, increasing the sample size decreases the margin of error, narrowing the interval.

Another look at the 90% Confidence Interval



The vertical line in the middle of the figure above denotes the unknown population proportion. The horizontal segments represent twenty 90% confidence intervals. The dot in the middle of each segment marks the sample proportion. Note that 18 of the 20 intervals (i.e., 90%) contain the true population proportion.

