HYPOTHESIS TESTING BY CALCULATOR

Step 1 – Identify the claim to be tested; use the correct symbols to write the claim symbolically based on which key words are used p: "proportion", "ratio", "percent" μ : "mean", "average"

- =: "has not changed", "is the same as"
- *≠* : "has changed", "is different from"
- >: "increased", "more than", "slower"
- <: "decreased", "less than", "faster"
- Step 2 Write the Null and the Alt. Hypotheses
 H₀: the null states the <u>equality</u>
 H_A: the alternative states the <u>inequality</u>

Step 3 – Decide which test to use, input data, choose (highlight) the inequality in H_A

1: Z-Test (Test for a mean; ð known)

Inpt: Data Stats

μ₀: hypothesized population mean
δ: population standard deviation
~: sample mean
n: sample size

 $\mu: \neq \mu_0 \qquad < \mu_0 > \mu_0$

OUTPUT Z-Test

µ: alternative
hypothesis z= test
statistic p= p-value ~=
sample mean
n= sample size

HYPOTHESIS TESTING (continued)

2: T-Test (Test for a mean; ð unknown)

Inpt: DataStats μ_0 : hypothesized population mean~: sample meanSx: sample standard deviation n:sample size $\mu: \neq \mu_0$ $\mu > \mu_0$

<u>OUTPUT</u>

µ: alternative hypothesis t=
test statistic p= p-value ~=
sample mean
Sx: sample standard deviation n=
sample size

Test for a proportion (percentage)

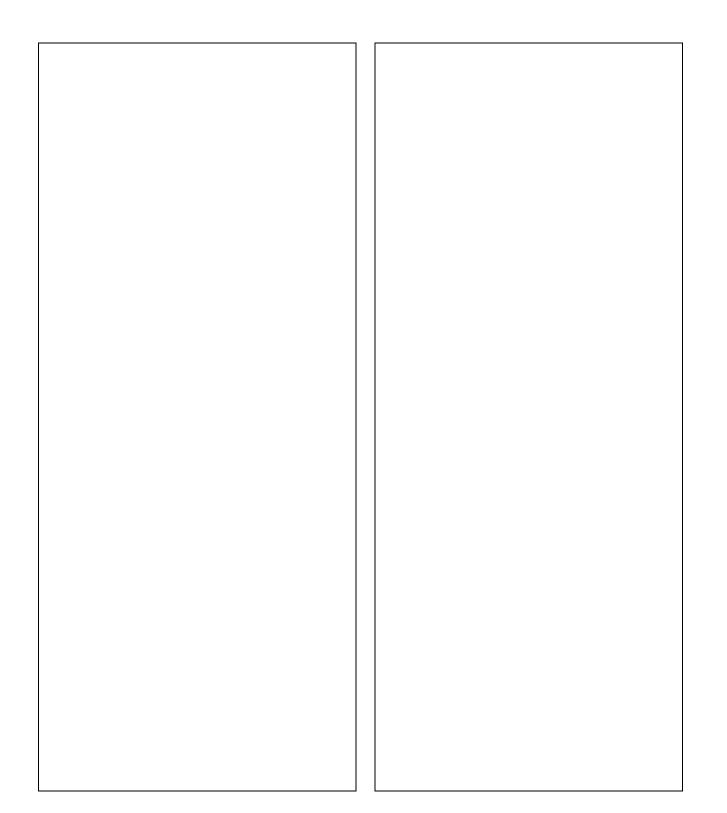
5: 1-PropZTest

Inpt: Data

Stats

p₀: hypothesized population proportion**x**: number of "successes" in the sample**n**: sample size

OUTPUT


1-PropZTest

T-Test

prop: alternative hypothesis z= test
statistic p= p-value
b= sample proportion
n= sample size

Step 4 – Compare the p-value with \ddot{y} and decide whether or not to reject H_o

"WHEN THE 'P' IS LOW, REJECT H.O." Step 5 – Write conclusion in context of the claim

