Statistics formulas for STA 2023 and STA 2122

Z-Score for Sample Values and Population Values

$$Z = \begin{bmatrix} x - \bar{x} & & X - \mu \\ Z = & & Z = \\ s & & \sigma \end{bmatrix}$$

 $\Sigma(\sqrt{-x})$

Standard Deviation for Sample Values and Population Values

Sample Standard Deviation, s =

Population Standard Deviation, \Box =

[](x−□)

Ν

Sampling Distribution for a Sample Proportion

$\hat{p} = \frac{x}{n}$	$\mu_{\hat{p}} = p$	$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	$Z = \frac{\hat{p} - p}{p(1-p)}$ n
Central Limit Theorem Conditions $(\hat{p} \sim normal)$	1. SRS	np ≥ 2.p) ≥ 10 10; and n(1-	3. N <u>≥</u> 10n

Sampling Distribution for a Sample Mean

Σx		σ	$\bar{x}-\mu$
$\bar{x} = $	$\mu_{\bar{x}} = \mu$	$\sigma_{\bar{x}} = - \sqrt{n}$	$Z = \frac{\sigma}{\sqrt{2}}$
n			
Central Limit Theorem	1. SRS	2. n <u>></u> 30 or	
Conditions ($\bar{x} \sim normal$)		x ~ normal	

Confidence Intervals and Test Statistics for Hypothesis Testing

Cl for μ, σ known	CI for μ, σ unknown	Cl for p
C.I. = $\bar{x} \pm Z \frac{\sigma}{\frac{1}{\sqrt{n}}}$	C.I. = $\bar{x} \pm t \frac{s}{\sqrt{n}}$	C.I. = $\hat{p} \pm Z_c \sqrt{\hat{p}(1n-\hat{p})}$
HT for μ, σ known	HT for μ, σ unknown	HT for p
$Z = \frac{\frac{\bar{x} - \mu}{\sigma}}{\sqrt{n}}$	$t = \frac{\bar{x} - \mu}{\sqrt{n}}$	$Z = -\frac{\hat{p} - p}{p(1-p)}$ $$

Confidence Interval Critical Values of Z

Confidence	Zc	Confidence	Z _c
90%	1.645	98%	2.33
95%	1.96	99%	2.576 or 2.58

Regression line equation y = ax + b, a = slope of the line, <math>b = the y-intercept, residual= $y - \hat{y}$; $r = correlation coefficient (-1 < r < 1), r^2 = coefficient of determination$

Binomial Distribution: $\mu = np$; $\sigma = \sqrt{np(1-p)}$;

Discrete Probability Distribution: $\mu = \Sigma[X \cdot P(X)]; \Box = \overline{\mathcal{Q}}[(x - \Box \cdot)^2 p(x)]$

Probability: nCr = $\frac{n!}{r!(n-r)!}$; nPr = $\frac{n!P}{(n-r)!}$; P(AUB) = P(A) + P(B) - P(A \cap B); P(A | B) = $\frac{(A \cap B)}{(B)}$; P(A) + P(A^C) = 1

Texas Instruments Calculator Shortcuts and Formulas

Descriptive Statistics: (Mean, Standard Deviation, Minimum, Q1, Median, Maximum):

- insert data in calculator STAT 🕏 Edit
- Then: STAT O CALC O1: 1-Vars Stat
- To clear a list: STAT Edit go up to the list name (L1, L2, L3...)--> CLEAR Enter
- Restore missing list name: STAT Edit go up 2nd Del type the name enter

Linear Regression:

- Correlation coefficient (one-time set up): 2nd 0 DiagnosticOn Enter Enter
- Insert values of X into List1 and values of Y into List2 STAT Edit
- Then: STAT O CALC O 4: LinReg(ax + b) O 2nd O 1 O comma O 2nd O 2 O enter Or: STAT O CALC O 8: linReg (a + bx) O 2nd O comma O 2nd O 2 O enter

Intervals:

- State TESTSe 1: Z-Test
 STATe TESTSe 5: 1propZ-Test
- Stat TESTS 2:T:Test <u>STAT ETSTS</u> A: <u>1propZ-Interval</u>
- STAT TESTS 4:2-SampT-Test <u>Hypothesis Test:</u>
- STAT TESTS 1: Z-test
- STAT TESTS 2: T-Test
- STAT TESTS 4: 2-SampT-Test
- STAT TESTS 5: 1propZ-Test

Distributions:

- 2nd VARS 2: normalcdf (left bound, right bound, Mean, Standard Deviation)
- 2nd VARS 2: invNorm (area to the left, Mean, Standard Deviation)
- 2nd VARS 5: tcdf (left bound, right bound, degrees of freedom)
- 2nd VARS O: binomialpdf(number of trials, probability of success, number of successes)

• 2nd VARS A:Binomcdf(number of trials, probability of success, number of successes)