The T Confidence Interval of a Population Mean

T Intervals are similar to Z Intervals; however, instead of a Critical Z Value, a T Interval uses a Critical T Value, and uses the sample standard deviation, s, instead of the population standard deviation, σ.

$$
\text { T Confidence Interval }=\bar{x} \pm t \times \frac{s}{\sqrt{n}}
$$

Consider this example: The Interdepartmental Delivery Service coordinator wants to estimate the true mean number of interdepartmental letters employees receive per week. She takes a sample of 26 employees and obtains a mean of 6 letters per week with a standard deviation of 2.3 letters. She needs to be 99\% confident of her estimate. Construct the Confidence Interval for the true mean for interdepartmental letters delivery per week.

Step 1: Find the Standard Error:

S. $E .=\frac{S}{\sqrt{n}} \quad E .=\frac{2.3}{\sqrt{26}} \approx 0.451$
S.

Step 2: Select Critical Value:

To find the Critical Value of a T distribution it will be easiest to use the Table at the end of a textbook (your teacher will provide a T table for tests, and exam). The Degrees of Freedom is calculated by subtracting one from the Sample Size; $D F=n-1=26-1=25$. Match the Confidence Column with the Row that has the Degrees of Freedom.

Central Area	.80	.90	.95	.98	.99
Confidence Level	80%	90%	95%	98%	99%
Degrees of Freedom. n-1	21	1.32	1.72	2.08	2.52

	25	1.32	1.71	2.06	2.49	2.79

Step 3: Compute the Margin of Error:

$$
\begin{gathered}
\text { Margin of Error }=t \times S . E . \\
\text { Margin of Error }=2.79 \times 0.451 \\
\text { Margin of Error }=1.258
\end{gathered}
$$

Step 4: Write out the Confidence Interval:

$$
\begin{gathered}
\text { C.I. }=\bar{x} \pm \text { M.o.E. } \\
\text { C.I. }=6 \pm 1.258 \\
(6-1.258,6+1.258) \\
(4.742,7.258)
\end{gathered}
$$

Step 5: Interpret the Confidence Interval:
"The Coordinator can be 99% confident that the average number of interdepartmental employee letters is between 4.742 and 7.258 letters per week."

Use the Texas Instruments calculator to find the confidence interval

Calculator Steps:
STAT > TESTS > 8: TInterval...
Inpt: Stats
$\bar{x}: 6$
Sx: 2.3
n : 26 C-Level:
. 99 Calculate:

The Output:
(4.7427, 7.2573)
$\bar{x}: 6$
$\mathrm{Sx}=2.3$
$\mathrm{n}=26$

