Z-scores and the Empirical Rule

The heights of individuals within a certain population are normally distributed. That is, it will be found that most peoples' heights are clustered around an average height, and the farther a particular height is above or below the average, the less people we would find with that height. Graphically, it looks like this:

A Z-score tells how many Standard Deviations a value is above or below the Mean.

Suppose that the Mean height (μ) of college basketball players is 6 feet 4 inches (chance the feet to inches; only one measuring unit is needed 76 inches $=\mu$) with a Standard Deviation (σ) of 2 inches.

- A height of 78 " (X) is 2 " above the Mean; 2 " is one Standard Deviation; so the Z -score associated with 78 " is positive 1 .
$\frac{X-\mu}{\sigma}=\frac{78-76}{2}=\frac{2}{2}=1$
- A height of 74" (X) is 2" below the Mean; 2" one Standard Deviation; so the Z-score associated with 72 " is negative 1 .

$$
\frac{X-\mu}{\sigma}=\frac{74-76}{2}=-\frac{2}{2}=-1
$$

The Empirical Rule says that:

- Approximately 68% of the distribution will be within one standard deviation of the mean. This is $\mathrm{Z}= \pm 1$
- Approximately 95% of the distribution will be within two standard deviations of the mean. This is $Z= \pm 2$
- Approximately 99.7% of the distribution will be within three standard deviations of the mean. This is $Z= \pm 3$

It is easier to work with the Empirical Rule if the percentages are broken down evenly. The 68% can be split into 34% on each side of the Mean, so from the Mean to the First Z-score there will be 34% of the Distribution.

This can also be applied to the 95%. If it is split in half, there will be 47.5% between the Mean and the Second Z-score. To calculate the percentage between the First Z-score and the Second Z-score just subtract the 34% from the 47.5\%: 47.5\%-34\%=13.5\%

This can be done to the Third Z-score and the 99.7\%. The result of the breakdown will look 99.7\%

