Find the equation of a logarithm function given two points and the value of its vertical asymptote
 $$
y=A \log (x+B)+C
$$

Important: One point should make the function argument $(x+b)$ equal to 1 .
Steps:

1. Look for the value of the vertical asymptote on the graph. This gives us the vertical asymptote, set $X-$ $B=0$. This gives the B value.
2. Look for reflection to the y axis. If the graph shows reflection, multiply the function argument $(x+b)$ by (-1).
3. Find C by using the point that makes the argument $(x+B)$ equal to 1 . Therefore, $A \log (x+B)$ will be zero and C will be the value of y.
4. Substitute the coordinates of a second point from the graph into the function equation to find A. It will be $A=(y-C) / \log (x+B)$
5. Rewrite the function equation in replacing A, B, and C with the values that were found.

Example1: Find the equation of the function for the graph below passing through (2,0), (1,2).
Solution: The general equation is $\boldsymbol{y}=A \log (x+B)+C$

1. The graph shows a vertical asymptote at $\mathrm{x}=3$. Therefore, B is given by $x+3=0 . B=-3$ the new equation is $y=A \log (x-$ 3) $+C$
2. The graph displays a reflection to the y axis. The function is $y=$ $A \log (-x+3)$. The argument $(x-3)$ was multiplied by (-1).
3. Now substitute $(2,0)$ (choose the x value that makes the \log
 argument equal to 1 for simplification) into the equation:

$$
\begin{gathered}
0=\mathrm{A} \log (-2+3)+C \\
0=\mathrm{A} \log (1)+C \\
\text { therefore }, C=0
\end{gathered}
$$

The equation becomes: $y=A \log (-x+3)$.
4. Substituting in the point $(1,2)$:

$$
\begin{gathered}
2=A \log (-1+3), \\
2=A \log (2) \\
\text { Then } A=2 / \log (2) .
\end{gathered}
$$

5. The final equation of the function is: $y=2 / \log (2) * \log (-x+3)$.

Example 2: Using the following graph, find the equation of the logarithm function passing through $(-1,1)$ and $(0,2)$.

Solution: The general equation is

$$
y=A \log (x+B)+C
$$

1. The graph displays a Vertical Asymptote at $x=-2$. Thus setting $x-(-2)=0$, gives us a B value of 2 . The new equation is $y=A \log (x+2)+C$
2. No reflection was observed on the graph. Therefore, no change in the equation inside the parenthesis.
3. Now substitute $(-1,1)$ (choose the x value that makes the \log
 argument equal to 1 for simplification) into the equation that we have so far.

$$
\begin{gathered}
1=A \log (-1+2)+C \\
1=A \log (1)+C ; \text { since } \log (1)=0, \text { Therefore, } C \\
=1
\end{gathered}
$$

The new equation is $y=A \log (x+2)+1$
4. By substituting $(0,2)$ in the equation, we get:

$$
\begin{gathered}
2=A \log (0+2)+1 \\
1=A \log (2) \\
A=(2-1) / \log (2), \\
=1 \quad(2) \\
A \quad / \log .
\end{gathered}
$$

5. The final equation is $y=1 / \log (2) * \log (x+2)+1$

$$
y=3 \log (x-2)+1 ;(3,1) \&(12,4)
$$

You try:

Solutions

$$
y=2 \log (-x+1)+1 ;(-9,3) \&(0,1)
$$

