Graphing Exponential and Logarithmic Functions

Exponential Function – An exponential function is any function that can be written in the form of $f(x) = a^x$, where x is a real number, a > 0 and $a \neq 1$. The number a is called the base of the exponential function.

Example: Graph the following exponential function by using a table to find at least three ordered pairs.

1)
$$f(x) = 2^x$$

Solution: a) Let x = 0, 1, and 2 and plug into the function to solve for f(x)

Graph the following exponential function by using a table to find at least three

2)

 $f(x) = -2^x$

Solution: a) The graph from Example 1 reflected over the x-axis.

Logarithmic Function – Any function in the form of $y = \log_a x$ which is the exponent y such that $a^y = x$.

The number a is called the base of the logarithm and a can be any positive constant other than 1.

3)

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Graph the following logarithmic function by using a table to find at least three

 $f(x) = \log_2 x$

Solution: a) Remember that y = f(x) and in this case $2^y = x$

b) Let y = 0, 1, and 2 and plug into the function to solve for x

4)

Graph the following logarithmic function by using a table to find at least three

 $f(x) = -\log_2 x$

Solution: a) This is the graph of Example 3 has been reflected over the x-axis.

b) Remember that y = f(x) and in this case $2^{-y} = x$

Let y = 0, -1, and -2 and plug into the function to solve for x

A)
$$x = 2^0 = 1$$
 B) $x = 2^{-(-1)} = 2^1 = 2$ C) $x = 2^{-(-2)} = 2^2 = 4$

5)

Practice Problems:

Graph the following exponential and logarithmic functions by using a table to make at least three ordered pairs:

4) $f(x) = -log_3 x$