Logarithms

A logarithm of a given number x, is the exponent required for the base a, to be raised to in order to produce that number x.

$$
\log _{a} x=y \quad \Leftrightarrow \quad a^{y}=x
$$

$$
\text { Note that } \Leftrightarrow \text { means "is equivalent to" }
$$

Logarithmic and Exponential Form

Change logarithm equations to exponential form or exponential equations to logarithmic form using the definition of a logarithm.

Example: Given 4

$$
3 / 2=8, \text { change the equation to logarithmic form. }
$$

Solution:

Compare the equation to the definition and rewrite it.
Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x \quad$ Notice that $a=4, x=8$, and

$$
\begin{equation*}
3 / 2=8 \tag{3}
\end{equation*}
$$

Given: 4

$$
y=\overline{2}, \text { respectively. }
$$

Therefore, using the definition: $4^{3 / 2}=8 \Leftrightarrow \log _{4} \mathbf{8}=\mathbf{3}_{-}$

Example: Given $\log _{25} 5=\frac{1}{2}$, change the equation to exponential form.

Solution:

Compare the equation to the definition and rewrite it.
Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$

Notice that $a=25, x=5$, and

Given: $\log _{25} 5=\frac{1}{2} \quad y=\frac{1}{2}$, respectively.

$$
1 / 2=5
$$

Therefore, using the definition: $\log _{25} 5=\Leftrightarrow \mathbf{2 5}$

Solving Logarithm and Exponential Equations

Evaluate logarithmic equations by using the definition of a logarithm to change the equation into a form that can then be solved.

Example: Given $3^{x-1}=7$, solve for x.

Solution:

Step 1: Set up the equation and use the definition to change it.

Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$

$$
\text { Given } 3^{x-1}=7
$$

Step 2: Now use the properties of logarithms to solve.

Recall the Change of Base Property:
$\log b \quad \log _{a} b=\frac{\ldots}{\log } a$
Apply it to $\log _{3} 7$.

$$
\log _{3} 7=
$$

Step 3: Use the order of operations to finish solving for x.

$$
\begin{aligned}
& x-1=\frac{\log 7}{\log 3} \\
& x=\frac{\log 7}{\log 3}+1
\end{aligned}
$$

Example: Given $\log _{6}(x+2)=3$, solve for x.

Solution:

Step 1: Set up the equation and use the definition to change it.

Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$
Given $\log _{6}(x+2)=3$
Notice 6 is the base or a, and 3 is the exponent or y.

Step 2: Now use the order of operations to solve.

$$
\begin{aligned}
& 6^{3}=x+2 \\
& 216=x+2 \\
& 214=x
\end{aligned}
$$

$$
x=214
$$

$\log _{6}(x+2)=3 \Leftrightarrow 6^{3}=x+2$

Expanding and Simplifying Logarithms

To expand or simplify logarithms, utilize the various properties of logarithms in conjunction with the definition.

Example: Given $\log _{3}\left(\frac{9 x^{2}}{\sqrt{x^{2}+1}}\right)$, expand the logarithm.

Solution:

Step 1: Expand the expression using the properties of logarithms.

Recall the Logarithm Multiplication and Division Properties:
$\log _{a m n}=\log _{a} m+\log _{a} n$
m
$\log _{a}(-)=\log _{a} m-\log _{n_{a} n}$
Apply them to $9 x^{2}$ and $\sqrt{x^{2}+1}$.

Given $\log _{3}\left(\frac{9 x^{2}}{\sqrt{x^{2}+1}}\right):$
$\Rightarrow \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(\sqrt{x^{2}+1}\right)$
so our final answer becomes:

$$
\begin{aligned}
& \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(\sqrt{x^{2}+1}\right) \\
& \Rightarrow \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(x^{2}+1\right)^{1 / 2} \\
& \Rightarrow \log _{3} 9+2 \log _{3} x-\frac{1}{2} \log _{3}\left(x^{2}+1\right)
\end{aligned}
$$

By definition, $\log _{3} 9=2$ since $3^{2}=9$,

$$
2+2 \log _{3} x-1-\log _{3}\left(x 2^{2}+1\right)
$$

Example: Write $3 \log _{2} y-\log _{2} x-7 \log _{2} z$ as a single logarithm.

Solution:

To simplify the expression, work backwards with the logarithmic properties.

Step 1: Use the Logarithm for Powers
Property where appropriate.

Given: $3 \log _{2} y-\log _{2} x-7 \log _{2} z$
Notice that it can be applied to $3 \log _{2} y$ and $7 \log _{2} z$.
$3 \log _{2} y-\log _{2} x-7 \log _{2} z$
$\Rightarrow \log _{2} y^{3}-\log _{2} x-\log _{2} z^{7}$
Step 2: Simplify using the Logarithm
Multiplication and Division Properties.

Solving Expanded Logarithms

Solving expanded logarithms requires applying the definition of logarithms and all the logarithm properties as needed.

Example: Given $\ln (x-2)+\ln (x-3)=\ln (2 x+24)$, solve for x.

Solution:

Note: $\ln (x-2)$ is only valid if $x \geq 2, \ln (x-3)$ is only valid if $x \geq 3$, and $\ln (2 x+24)$
is only valid if $x \geq-12$. For the equation to be valid, all conditions must be met, so $x \geq 3$.
Let both sides of the equation become the
Step 1: Simplify the left side of the equation using the multiplication and division properties of logarithms.
$\ln (x-2)+\ln (x-3)=\ln (2 x+24)$
$\Rightarrow \ln (x-2)(x-3)=\ln (2 x+24)$
$\Rightarrow \ln \left(x^{2}-5 x+6\right)=\ln (2 x+24)$

Step 2: Use logarithm properties. Recall logarithm properties of bases:
$\ln e^{x}=x$ and $e^{\ln x}=x$
$\ln \left(x^{2}-5 x+6\right)=\ln (2 x+24)$

Use the order of operations as a guide.

$$
\begin{aligned}
& \log _{2} y^{3}-\log _{2} x-\log _{2} z^{7} \\
& \Rightarrow \log _{2} y^{3}-\left(\log _{2} x+\log _{2} z^{7}\right) \\
& \Rightarrow \log _{2} y^{3}-\log _{2} x z^{7} \\
& \Rightarrow \quad \frac{y_{3}}{-} \log _{2} \quad 7 \\
& \quad x z
\end{aligned}
$$

exponent of the base e, and apply the property.

$$
\Rightarrow e \ln \left(x^{2}-5 x+6\right)=e \ln (2 x+24)
$$

$$
\Rightarrow x^{2}-5 x+6=2 x+24
$$

Practice Exercises:

1. Given $\log _{4}(-x)+\log _{4}(6-x)=2$,

Solve for x .
2. Expand $\log _{2}\left(\frac{x}{\sqrt{x^{2}-1}}\right)$ completely.
3. Write the following as a single
logarithm: $2 \log _{3} x+4-8 \log _{3} y$ Step
3: Combine like terms to solve for x.
$x^{2}-5 x+6=2 x+24$
$\Rightarrow x^{2}-7 x-18=0$
$\Rightarrow(x-9)(x+2)=0$
$x=9,-2$

Step 4: Check your answers. Recall that every logarithm must meet the conditions for the answer to be correct.

For $x=9$
$\ln ((9)-2)+\ln ((9)-3)=\ln (2(9)+24)$
$\Rightarrow \ln (7)+\ln (6)=\ln (42)$
$\Rightarrow \ln (7 \cdot 6)=\ln (42) \xrightarrow{\rightarrow}$ This is valid!

For $x=-2$
Since $-2 \neq 3$, it does not meet all the conditions, and is not valid.

Therefore: $\boldsymbol{x}=\mathbf{9}$

Answers:

1. $x=-2$
2. $\log _{2} x-\frac{1}{2} \log _{2}(x-1)-\frac{1}{2} \log _{2}(x+1)$ $81 x^{3}$
3. $\log _{3} \quad-y_{8}$
