Logarithmic and Exponential Equations - Practice (and solutions)

Logarithmic equations can sometimes be solved by exploiting the one-to-one property of logarithmic functions. That is, $(this=that) \Leftrightarrow \log(this) = \log(that)$.

For example, if we have $\log_2(4x - 3) = \log_2 13$ then we can solve this by using the one-to-one property.

$$4x - 3 = 13$$
$$4x = 16$$
$$x = 4$$

Other exponential equations can be solved using logarithms. Using the oneto-one property, if we have this = that then, log(this) = log(that)

For example,

$$2^{x} = 7$$
$$\log 2^{x} = \log 7$$
$$x \log 2 = \log 7$$
$$x = \frac{\log 7}{\log 2}$$

Solve each of the following equations.

1. $\log_a(x + 4) - \log_a(x + 2) = \log_a x$ 2. $\ln(y + 2) = \ln(y - 7) + \ln 4$ 3. $\ln(x + 1) = \ln(x - 4)$ 4. $\log q^2 = 1$ 5. $4^x = 12$ 6. $3^{2x-5} = 13$ 7. $e^{2-x} = 12$ 8. $10e^{3x-7} = 5$ 9. $\ln x - \ln(x + 1) = \ln 5$ 10. $\log_4(x + 3) + \log_4(x - 3) = 1$ Answers:

6) $x = \frac{1}{2} \left(\frac{\log 13}{\log 3} + 5 \right) = \frac{\log 13}{\log 9} + \frac{5}{2}$
7) $x = 2 - \ln 12$
8) $x = \frac{7 + \ln \frac{1}{2}}{3} = \frac{7 - \ln 2}{3}$
9) Ø
10) $x = \pm \sqrt{13}$