MAC 1114 - Trigonometry Basic Graphs

Basic Trigonometric Graphs:

$y=\cos x$			$y=\sin x$	$y=\tan x$
$y=\sec x$			$y=\csc x$	$y=\cot x$
		(1)		

Standard Forms

$\begin{aligned} & y=a \sin k(x-b)+c y \\ & =a \cos k(x-b)+c \end{aligned}$	Amplitude= a	$\text { Period }={ }_{k}^{2 \pi}, \mathrm{k}>0$	Phase shift: b	Vertical shift: c
$\begin{aligned} & y=a \csc k(x-b)+c \\ & y=a \sec k(x-b)+c \end{aligned}$	Not applicable	$\text { Period }={ }_{k}^{2 \pi}, \mathrm{k}>0$	Phase shift: b	Vertical shift: c
$\begin{aligned} & y=a \tan k(x-b)+c \\ & y=a \cot k(x-b)+c \end{aligned}$	Not applicable	$\begin{gathered} \pi \\ \text { Period }=, \mathrm{k}>0 \\ k \end{gathered}$	Phase shift: b	Vertical shift: c

Examples (these show one period for each example)

1. $\boldsymbol{y}=\mathbf{3} \boldsymbol{\operatorname { c o s }}(\mathbf{2 x}+2 \pi)$: put it into the standard form by factoring out the 2 that is with the x . This gives:
```
                                    \(\pi \quad \pi \quad 3 \pi\)
Period \(\rightarrow \quad=\pi\) so would divide graph into \(0,-,--\) and \(\pi\).
    2 4 24
    \(-\pi\)
Phase shift \(\rightarrow\) (to the left)

5 point method: (take the unshifted graph and adjust to get new points)
Starting point: unshifted ( 0,3 ) \(\rightarrow\left(0-\frac{\pi}{3}, 3\right) \quad\) Second point: unshifted \(\left(\frac{\pi}{4}, 0\right) \rightarrow\left(\frac{\pi}{4}-\frac{\pi}{3}, 0\right)\)
Third point: unshifted \(\left(\begin{array}{c}\pi \\ 2\end{array},-3\right) \rightarrow\left(\begin{array}{c}\pi \\ 2\end{array}-\frac{\pi}{3},-3\right) \quad\) Fourth point: unshifted \(\left(\frac{3 \pi}{4}, 0\right) \rightarrow\left(\frac{3 \pi}{4}-\frac{\pi}{3}, 0\right)\)
End of period: unshifted \((\pi, 3) \rightarrow\left(\pi-\frac{\pi}{3}, 3\right)\)
\begin{tabular}{|c|l|}
\hline angle & value \\
\hline\(\frac{-\pi}{3}\) & 3 \\
\hline\(\frac{-\pi}{12}\) & 0 \\
\hline\(\frac{\pi}{6}\) & -3 \\
\hline\(\frac{5 \pi}{12}\) & 0 \\
\hline\(\frac{2 \pi}{3}\) & 3 \\
\hline
\end{tabular}
2. \(y=2 \csc (2 x+\pi)\)
put it into the standard form by factoring out the 2 that is with the x . This gives:
\[
\begin{aligned}
& -\pi
\end{aligned}
\]

Phase shift \(\rightarrow\) (to the left)
\begin{tabular}{|c|l|}
\hline angle & value \\
\hline\(-\pi\) & asymptote \\
\(\overline{4}\) & \\
\hline
\end{tabular}

Starting point: unshifted \((0,1) \rightarrow\left(0-\frac{\pi}{4}, 1\right)\)
Third point: unshifted \(\left(\begin{array}{l}\pi \\ 2\end{array},-1\right) \rightarrow\left(\begin{array}{l}\pi \\ 2\end{array}-\frac{\pi}{4}, 0\right)\) End of period: unshifted \((\pi, 1) \rightarrow\left(\pi-\frac{\pi}{4}, 1\right)\)

Second point: unshifted \(\binom{\pi}{4} \rightarrow\left(\begin{array}{c}\pi \\ 4\end{array}-\frac{\pi}{4}, 0\right)\)
Fourth point: unshifted \(\left(\frac{3 \pi}{4}, 0\right) \rightarrow\left(\begin{array}{c}3 \pi \\ 4\end{array}-\frac{\pi}{4}, 0\right)\)

3. \(y=\)
\(\tan (x-\)
\({ }^{\pi}\) )
4
\(\pi\)
\(\pi\)
Period: no change since \(k=\) \(1 \rightarrow \pi\) so

Starting point: unshifted \(\left(\frac{-\pi}{2},-\infty\right) \rightarrow\left(\frac{-\pi}{2}+\frac{\pi}{4},-\infty\right)\) Second point: unshifted \(\left(-\frac{\pi}{4},-1\right) \rightarrow\left(-\frac{\pi}{4}+\frac{\pi}{4},-1\right)\) Third point: unshifted \((0,0) \rightarrow\left(0+\frac{-}{4}, 0\right)\)
End of period: unshifted \((,+\infty) \rightarrow(+-,+\infty)\)
\begin{tabular}{|c|c|}
\hline angle & value \\
\hline\(\frac{-\pi}{4}\) & \(-\infty\) \\
\hline 0 & -1 \\
\hline\(\frac{\pi}{4}\) & 0 \\
\hline\(\frac{\pi}{2}\) & 1 \\
\hline\(\frac{3 \pi}{4}\) & \(+\infty\) \\
\hline
\end{tabular}

Fourth point: unshifted \(\left(\begin{array}{l}\pi \\ 4 \\ , 1\end{array}\right) \rightarrow\left(\begin{array}{c}\pi \\ 4\end{array}+\frac{\pi}{4}, 1\right)\)

point method: (take the unshifted graph and adjust to get new points)
\(\pi\)
\begin{tabular}{lll}
\(\pi\) & \(\pi\) & \(\pi\) \\
2 & 2 & 4
\end{tabular}```

