## **MAC 1114 – Trigonometry Basic Graphs**

Basic Trigonometric Graphs:



### Standard Forms

| $y = a \sin k(x - b) + c y$ | Amplitude= a   | $2\pi$             | Phase shift: b | Vertical shift: c |
|-----------------------------|----------------|--------------------|----------------|-------------------|
| $= a \cos k(x - b) + c$     |                | Period = $, k > 0$ |                |                   |
| a 555 K(X 5) 15             |                | k                  |                |                   |
| $y = a \csc k(x - b) + c$   | Not applicable | $2\pi$             | Phase shift: b | Vertical shift: c |
| $y = a \sec k(x - b) + c$   |                | Period = $, k > 0$ |                |                   |
| , a see n(x 2) 10           |                | k                  |                |                   |
| y = a tan k(x - b) + c      | Not applicable | π                  | Phase shift: b | Vertical shift: c |
| $y = a \cot k(x - b) + c$   |                | Period = , k > 0   |                |                   |
| , a cot(x b) . c            |                | k                  |                |                   |

## Examples (these show one period for each example)

1.  $y = 3\cos(2x + 2\pi)$ : put it into the standard form by factoring out the 2 that is with the x. This gives:

$$y = 3 \cos 2(x + )$$

$$y = 3 \cos 2(x + )$$
Amplitude  $\Rightarrow$  3,
$$\frac{2\pi}{2\pi}$$

$$= \pi \text{ so would divide graph into } 0, , , -\frac{3\pi}{4} \text{ and } \pi.$$
Phase shift  $\Rightarrow$  (to the left)

#### 5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted (0,3)  $\rightarrow$  (0 -  $\frac{\pi}{3}$ , 3)

Third point: unshifted  $\binom{\pi}{2}$ , -3)  $\rightarrow \binom{\pi}{2} - \frac{\pi}{3}$ , -3) End of period: unshifted  $(\pi, 3) \rightarrow (\pi - \frac{\pi}{3}, 3)$ 

Second point: unshifted  $\binom{\pi}{4}$ , 0)  $\Rightarrow$   $\binom{\pi}{4} - \frac{\pi}{3}$ , 0) Fourth point: unshifted  $(\frac{3\pi}{4}, 0) \Rightarrow (\frac{3\pi}{4} - \frac{\pi}{3}, 0)$ 



| J                 |       |
|-------------------|-------|
| angle             | value |
| $\frac{-\pi}{}$   | 3     |
| 3                 |       |
| $\frac{-\pi}{}$   | 0     |
| 12                |       |
| $\underline{\pi}$ | -3    |
| 6                 |       |
| $5\pi$            | 0     |
| 12                |       |
| $2\pi$            | 3     |
| 3                 |       |
|                   |       |

# 2. $y = 2 \csc(2x + \pi)$

put it into the standard form by factoring out the 2 that is with the x. This gives:

$$y = 2 \csc 2 (x + 1)$$
; period =  $\frac{2\pi}{4} = \pi$  so would divide graph into  $0, \frac{\pi}{7}, \frac{\pi}{7} = \frac{3\pi}{4}$  and  $\pi$ .

Phase shift → (to the left)

| angle  | value     |
|--------|-----------|
| $-\pi$ | asymptote |
| 4      |           |

#### 5 point method: (take the unshifted graph and adjust to get new points)

| 0            | 2         | _ |
|--------------|-----------|---|
| $\pi$        | asymptote |   |
| <del>-</del> |           |   |
| π            | -2        |   |
| <u>-</u>     |           |   |
| 3π           | asymptote |   |
| 4            |           |   |

Starting point: unshifted (0,1)  $\rightarrow$  (0  $-\frac{\pi}{4}$ , 1) Third point: unshifted  $\binom{\pi}{2}$ , -1  $\rightarrow$   $\binom{\pi}{2} - \frac{\pi}{4}$ , 0) End of period: unshifted  $(\pi, 1) \rightarrow (\pi - \frac{\pi}{4}, 1)$  Second point: unshifted  $\binom{\pi}{4}$ , 0)  $\rightarrow \binom{\pi}{4} - \frac{\pi}{4}$ , 0) Fourth point: unshifted  $(\frac{3\pi}{4}, 0) \rightarrow \binom{3\pi}{4} - \frac{\pi}{4}$ , 0)

Hint: start with a sine graph with the same amplitude, shift and period, and the use it to graph it's inverse: the csc. The zero's become the asymptotes for the csc graph.

divide the graph into increments of like normal.



Phase shift →

3. y =tan (x - $\pi$ ) Period: no change

since k =  $1 \rightarrow \pi$  so

4

Starting point: unshifted  $(\frac{-\pi}{2}, -\infty) \rightarrow (\frac{-\pi}{2} + \frac{\pi}{4}, -\infty)$  Second point: unshifted  $(-\frac{\pi}{4}, -1) \rightarrow (-\frac{\pi}{4} + \frac{\pi}{4}, -1)$  Third point: unshifted  $(0, 0) \rightarrow (0 + \frac{\pi}{4}, 0)$  Fourth point: unshifted  $(\frac{\pi}{4}, 1) \rightarrow (\frac{\pi}{4} + \frac{\pi}{4}, 1)$  End of period: unshifted  $(\frac{\pi}{4}, +\infty) \rightarrow (\frac{\pi}{4} + \frac{\pi}{4}, -1)$ 

| angle            | value |
|------------------|-------|
| $\frac{-\pi}{4}$ | -∞    |
| 0                | -1    |
| $\frac{\pi}{4}$  | 0     |
| $\frac{\pi}{2}$  | 1     |
| $\frac{3\pi}{4}$ | +∞    |



point method: (take the unshifted graph and adjust to get new points)

$$\pi$$
  $\pi$   $\tau$  2 2 4