Polar and Rectangular Coordinate Conversions

Polar Coordinate System – Any ordered pair written in the form of (r, θ) where r is the r radius from the Origin point O to a fixed point P and θ is the angle between the Polar Axis and the segment $O^{\overline{p}}$.

Rectangular Coordinate System – Any ordered pair that can be written in the form of (x, y) where x is the horizontal component and y is the vertical component of the point.

$$x = r \cos \theta$$
 and $y = r \sin \theta$

Converting from Polar to Rectangular Coordinates:

Example: Find the Rectangular Coordinates for the point that has Polar Coordinates $(2, 60^{\circ})$.

Solution:
$$x = r \cos \theta$$
 and $y = r \sin \theta$
 $x = 2 \cos 60^{\circ}$ $y = 2 \sin 60^{\circ}$
 $= 2 \times \frac{1}{2}$ $= 2 \times \frac{\sqrt{3}}{2}$
 $= 1$ $= \sqrt{3}$

The Rectangular Coordinates for the point that has Polar Coordinates (2 , 60°) is (1 , $\sqrt{3}$)

Converting from Polar Coordinates to Rectangular Coordinates:

Given $r^2 = x^2 + y^2$ and $\theta = y_x$

Example: Find the Polar Coordinates for the point that has Rectangular Coordinates (3, 3). Solution:

$$r^2 = x^2 + y^2$$

Given: $r^2 = 3^2 + 3^2$

$$\tan \theta =$$

$$r^2 = 9 + 9$$

$$\tan \theta = \frac{3}{3}$$

$$r^2 = 18$$

$$\tan\theta=1$$

$$r = \sqrt{18} = 3\sqrt{2}$$

$$tan^{-1}(1) = 45^{\circ}$$

The Polar Coordinates for the point that has Rectangular Coordinates (3, 3) is $(3\sqrt{2},45^{\circ})$.

Solution:

Step 1:
$$y^2 = (rsin\theta)^2$$
 and $2x = 2rcos\theta$

Step 2:
$$r^2(\sin\theta)^2 = 2r\cos\theta$$

Step 3: Solve for r:
$$r = \frac{2\cos\theta}{(\sin\theta)^2}$$

$$r = 2 \frac{\cos \theta}{\sin \theta} \frac{1}{\sin \theta}$$
 $r = 2 \cot \theta \csc \theta$

Example: Express the following Polar equations in Rectangular Coordinates: $r = 5 \csc \theta$

Solution:

Step 1:
$$r = \frac{5}{\sin \theta}$$

Step 2:
$$rsin\theta = 5$$

Step 3:
$$y = r sin \theta = 5$$
 y= 5

Practice Exercises:

Find the rectangular coordinates for the point that has the given polar coordinates (Round to two decimal places):

Find the polar coordinates for the point that has the given rectangular coordinates (Round to two decimal places):

5)
$$(10, -2)$$

Express the following equation in Polar coordinates:

7)
$$2x^2 = y$$

Express the Polar Equation in Rectangular Coordinates:

8)
$$r = 4\csc\theta$$

Solutions:

5)
$$(10.20, 149.97)$$
 6) $(8.60, 54.46)$ 7) $r = \frac{1}{2} \tan\theta \sec\theta$ 8) $y = 4$

8)
$$y = 4$$