Vector Algebra

Vector notation is designed to not just give you a point in space but a directional vector. They will usually look like $\langle 2,5\rangle$. This is giving you a vector that starts at the origin and continues in the direction of the (x, y) point of $(2,5)$. Vectors can also be written in the form: $2 \boldsymbol{i}+5 \boldsymbol{j}$. The \boldsymbol{i} component is always x and the j is y.

Basic Vector Operations and Rules (let $\boldsymbol{u}=\langle\mathrm{a}, \mathrm{b}>$ and $\boldsymbol{v}=\langle\mathrm{c}, \mathrm{d}\rangle$)
Magnitude of a vector: $\quad|\mathbf{v}|=\sqrt{a^{2}+b^{2}}$; length of the vector
Addition Rules:

$$
u+v=\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle
$$

Scalar Multiplication: $\quad c \boldsymbol{u}=c<a, b>=<c a, c b\rangle$
Examples of addition and subtraction with vectors, scalar multiplication: Let:
$\boldsymbol{U}=\langle 2,3>, \boldsymbol{W}=\langle-4,6\rangle$

1) $\boldsymbol{U}+\boldsymbol{W}=\langle 2-4,3+6\rangle=\langle\mathbf{- 2 , 9} \mathbf{9}$ or $\mathbf{- 2 i}+\mathbf{9 j}$
2) $\boldsymbol{W}-\boldsymbol{U}=\langle-4,6\rangle-\langle 2,3\rangle=<-4-2,6-3\rangle=\langle-6,3>$ or $-6 \mathbf{i}+3 \mathbf{j}$
3) $2 U-3 W=\langle 4,6>-<-12,18>=<4-(-12), 6-18\rangle=<16,-12>$ or $16 i-12 j$

You Try (1): find $4 \boldsymbol{U}-2 \boldsymbol{W}$

Unit Vector- magnitude is 1

Example of converting a vector to a unit vector: $\mathbf{v}=<2,5>$

1) Find the magnitude $\boldsymbol{\theta} \sqrt{2^{2}+5^{2}}=\sqrt{4+25}=\sqrt{29}$

$$
U=-v=\left\langle\frac{1}{\sqrt{v}}, \frac{5}{\sqrt{ }}\right\rangle
$$

2)

$\begin{array}{lll}|v| & 29 \quad 29\end{array}$
3) This would give a unit vector (length of 1) in the direction of \mathbf{v}.

You Try(2): find the unit vector for the vector $\boldsymbol{v}=\langle-1,5>$

Dot Product

The dot product is used to find the angle between two vectors. The result will always be a scalar (a number not a vector).

Definition: if $\boldsymbol{u}=<\mathrm{a}, \mathrm{b}>$ and $\boldsymbol{v}=\langle\mathrm{c}, \mathrm{d}>$ then $\boldsymbol{u} \cdot \boldsymbol{v}=\mathrm{ac}+\mathrm{bd}$

Example: $\boldsymbol{u}=\langle 2,3>, \boldsymbol{v}=<-4,6>$, then $\boldsymbol{u} \cdot \boldsymbol{v}=2 x-4+3 x 6=-8+18=10$ You
$\operatorname{Try}(3): u=\langle 1,5\rangle, v=\langle-2,1\rangle$ solve for $u \cdot v$

Find the angle between two vectors (application of the dot product)

$$
u \cdot v
$$

$\cos \theta=$ \qquad
$|u||v|$ So if $\boldsymbol{U}=\langle 2,3\rangle, \boldsymbol{V}=\langle-4,6\rangle$, then:
$\cos \theta=\frac{\langle 2,3\rangle-\langle-4,6\rangle}{|\sqrt{13}|| | \sqrt{52} \mid}=\frac{-8+18}{26}=\frac{10}{26}=\frac{5}{13}$; thus $\cos \theta=\frac{5}{13}$; so $\theta=67.38^{\circ}$.

On another note, two vectors are said to "orthogonal" (at a right angle or 90° apart) if $\boldsymbol{u} \cdot \boldsymbol{v}=0$

You Try(4): find the angle between $\boldsymbol{U}=\langle-2,1>$ and $\boldsymbol{V}=\langle-4,3>$

Finding the scalar component of \boldsymbol{u} on \boldsymbol{v}

An important use of the dot product is to determine the projection of one vector onto another if they share a common initial point.

If θ is the angle between vectors u and v, then the scalar component of u on v is given by: u.v
$\operatorname{comp}_{v} \mathrm{u}=$ \qquad
So if $\boldsymbol{u}=\langle 2,3\rangle, \boldsymbol{v}=\langle-4,6\rangle$, then
$\operatorname{comp}_{v} \mathrm{u}=\frac{\langle 2,3><-4,6\rangle}{|\sqrt{13}|}=\frac{10}{\sqrt{13}}=2.77$ to 2 significant figures.
One application of this is Work which can be defined as:

$$
\operatorname{comp}_{d} \mathrm{~F}|\mathrm{~d}|=\frac{F . d}{|d|=F \cdot d} \underset{|d|}{|d|}
$$

_1 5

