Vector Interpretations

Basic directional vectors are always of the form <horizontal change, vertical change>, or (x component, y component>. Keep in mind east is in the x direction, west is the $-x$ direction, north is in the y direction and south is the -y direction.

Examples of moving 5 miles in each direction:

Direction	Graph	Vector Set-up
East 50		<5,0>
West $5 \boldsymbol{\theta}$		<-5,0>
North $5 \boldsymbol{\theta}$		<0,5>
South $5 \boldsymbol{\theta}$		<0,-5>
Northeast $5 \boldsymbol{\theta}$		$<5 \cos \left(45^{\circ}\right), 5 \sin \left(45^{\circ}\right)>$
Northwest $5 \boldsymbol{\theta}$		$<5 \cos \left(135^{\circ}\right), 5 \sin \left(135^{\circ}\right)>$
Southeast $5 \boldsymbol{\theta}$		$<5 \cos \left(315^{\circ}\right), 5 \sin \left(315^{\circ}\right)>$
Southwest $5 \boldsymbol{\theta}$		$<5 \cos \left(225^{\circ}\right), 5 \sin \left(225^{\circ}\right)>$

Example:

You start at home and take a morning walk. You follow the path of:

1) 5 miles east 2) 10 miles southeast
2) 3 miles south
3) 2 miles southwest Let's draw the picture and break each step into components.
4) 5 miles east

5) 10 miles southeast

6) 3 miles south
7) 2 miles southwest

a) How far did you walk: $5+10+3+2=20$ miles
b) Displacement vector: see calculations in chart. Result: <10.657, -11.485>

	Horizontal component(x)	Vertical component(y)
5 miles east	5	0
10 miles southeast	$10 \cos \left(315^{\circ}\right)$	$10 \sin \left(315^{\circ}\right)$
3 miles south	0	-3
2 miles southwest	$2 \cos \left(225^{\circ}\right)$	$2 \sin \left(225^{\circ}\right)$
resultant	$\mathbf{1 0 . 6 5 7}$	-11.485

c) Magnitude: $\sqrt{(10.657)^{2}+(-11.485)^{2}} \quad=15.67$ miles from home if you walk back on a straight line.
d) What direction should you head to get back home? Angle comes from the resultant vector: $\tan ^{-1}$ (- \qquad 11.485) $=$ -47°.

This is our reference angle since $\frac{-\pi}{2}<x<{ }_{2}^{\pi}$. Since you are in the southeast quadrant you can see that you would
have to head home at a northwest heading. Thus, your heading should be NW 43° since our heading is measured from the N/S line.

