## Verifying trigonometric identities

Process: make one side look exactly like the other using a combination of trigonometric identities and algebra. You can work with only one side at a time.

1. Algebra techniques utilized
a. "FOIL"ing example $1 \quad(\cot x-\csc x)(\cos x+1)=-\sin x$
b. "FOIL"ing example $2 \quad \frac{(\sin t+\cos t)^{24}}{\sin t \cos t}=2+\sec t \csc t$
c. distribution
$\sec t \csc t(\tan t+\cot t)=\sec ^{2} t+\csc ^{2} t$
d. Common denominator

$$
2 \sec \mathrm{x}=\frac{1}{\sec x+\tan x}+\frac{1}{\sec x-\tan x}
$$

2. Conjugate

$$
\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}
$$

3. Substitution of identity

$$
\sin ^{2} x+\cos ^{2} x+\tan ^{2} x=\sec ^{2} x
$$

4. Turn all functions into $\sin \mathrm{x}$ and $\cos \mathrm{x} \quad \frac{\cos x}{\sec x}+\frac{\sin x}{\csc x}=1$

If all else fails, turn everything into sine $x$ and cosine $x$ and see what happens! Usually there is lots of algebra between using the trig functions. You have to be very familiar with the basic functions.

## Basic Functions

$$
\begin{array}{lll}
\sec \mathrm{x}=\frac{1}{\cos x} & \csc \mathrm{x}=\frac{1}{\sin x} & \cot \mathrm{x}=\frac{1}{\tan x} \quad \tan \mathrm{x}=\frac{\sin x}{\cos x} \\
\sin ^{2} x+\cos ^{2} x=1 & 1+\cot ^{2} x=\csc ^{2} x & \tan 2 \mathrm{x}+1=\sec ^{2} \mathrm{x}
\end{array}
$$

The last two can be obtained by dividing the first either by sine squared $x$ or cosine squared $x$. Might also look like cosine $x=1$ minus sine squared $x$ or 1 $=$ secant squared $x$ - tangent squared $x$

## Examples

Worked out (remember, work with only one side until it looks like the other)

1. $(\cot x-\csc x)(\cos x+1)=-\sin x$
$=\cot x \cos x+\cot x-\csc x \cos x-\csc x$
$=\frac{\cos x}{\sin x} \cos x+\frac{\cos x}{\sin x}-\frac{1}{\sin x} \cos x-\frac{1}{\sin x}$
$=\frac{\cos ^{2} x}{\sin x}+\frac{\cos / x}{\sin x}-\frac{\cos / x}{\sin x}-\frac{1}{\sin x}$
$=\frac{\cos ^{2} x-1}{\sin x}$
$=\frac{\left(1-\sin ^{2} x\right)-1}{\sin x}$
$=\frac{-\sin ^{2} x}{\sin x}=-\sin x$
$\operatorname{ec} t \csc t$
2. $\frac{(\sin t+\cos t)^{2}}{\sin t \cos t}=2+\sec t \csc t$
$=\frac{\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t}{\sin t \cos t}$
$=\frac{1+2 \sin t \cos t}{\sin t \cos t}$
$=\frac{1}{\sin t \cos t}+\frac{2 \sin t \cos t}{\sin t \cos t}$
$=\csc \mathrm{tsec} \mathrm{t}+2$
(working with left side since more complicated)
FOIL the binomials
insert $\sin x / \cos x$ identities
simplify
cancel like terms
identity; eliminate cos $x$ term since not in answer
reduce
(working with left side since more complicated)
FOIL out the top
combine $\sin ^{2} x+\cos ^{2} x=1$
separate fraction since final answer doesn't have one
use reciprocals and reduce fraction
