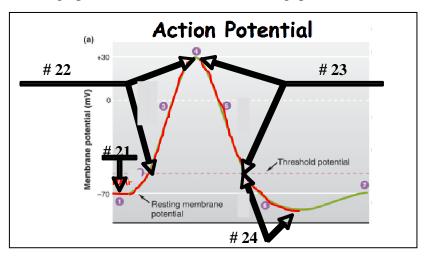
Neural Signaling Quiz

Directions: Choose the best answer to the questions below

	n that is not signaling and has a relatively more negatively charged r membrane is considered to be
b. c.	at rest depolarized hyperpolarized a graded neuron
2. What is t	the average resting membrane potential in a neuron?
b. c. d.	60 mV 70 mV -80 mV -70mV -60 mV
_	membrane potential is gradient which is caused by gradient.
	a chemical concentration, an electrical concentration an electrical concentration, a chemical concentration
	cellular concentration of Na^+ ions in a neuron at rest is, but the r concentration of K^+ ions inside of a neuron at rest is
b. c.	15 mmol/L, 150 mmol/L 5 mmol/L, 115 mmol/L 115 mmol/L, 15 mmol/L 150 mmol/L, 5 mmol/L
a. b. c. d.	and K ⁺ concentration gradient is established by the Na ⁺ leak channel the Na ⁺ / K ⁺ ATPase (Pump) the K ⁺ Leak Channel ALL are correct ALL are correct except a


For use with TCC iTunes University Neural Signaling Lecture. Developed by: Martha Kutter 2009 for the Learning Commons at Tallahassee Community College.

6. The Na	/ K ⁺ ATPase (pump)
a.	moves 3 Na ⁺ out for every 3 K ⁺ in
	moves 2 Na ⁺ in for every 2 K ⁺ out
	moves 3 Na ⁺ out for every 2 K ⁺ in
d.	moves 3 Na+ in for every 2 K ⁺ out
7. A stimu	lus occurs on the of a neuron.
a.	axon
b.	axon terminal
	dendrite
	axon hillock
e.	nucleus
8. A stimu	lus always results in
a.	an action potential
b.	a graded potential
c.	a neurotransmitter being released
d.	hyperpolarization of the neuron
9. A stimu	llus causes ion channels to
a.	Na ⁺ , Close
b.	Na ⁺ , Open
	K ⁺ , Close
d.	K ⁺ , Open
10. If	is achieved by a graded potential, then an action potential can
occur.	
a.	a concentration gradient
b.	an electrical gradient
c.	threshold
d.	depolarization in the dendrite
11. Which order?	of the following lists the three phases of an action potential in the correct
a.	Repolarization, Depolarization, Hyperpolarization
b.	Depolarization, Hyperpolarization, Repolarization
c.	Hyperpolarization, Depolarization, Repolarization
d.	Depolarization, Repolarization, Hyperpolarization

12. In Hyp	perpolarization, the intracellular membrane becomes slightly more
	positive
b.	negative
13. Hyperi	polarization is caused by
	Na ⁺ Channels being OPEN, and K ⁺ Channels being CLOSED
	Na ⁺ Channels being CLOSED, and K ⁺ Channels being OPEN
	Na ⁺ Channels being OPEN, and K ⁺ Channels being OPEN
	Na ⁺ Channels being CLOSED, and K ⁺ Channels being CLOSED
14. The me Hyperpola	embrane potential achieves a minimum intracellular charge of during rization.
а	-70 mV
	-80mV
	30 mV
	60 mV
	80 mV
c.	
_	olarization, the intracellular membrane becomes slightly more
	positive
b.	negative
16. Denola	arization is caused by
	Na ⁺ Channels being OPEN, and K ⁺ Channels being CLOSED
	Na ⁺ Channels being CLOSED, and K ⁺ Channels being OPEN
	Na ⁺ Channels being OPEN, and K ⁺ Channels being OPEN
	Na ⁺ Channels being CLOSED, and K ⁺ Channels being CLOSED
G.	The Chambers being Choole, and It Chambers being Choole
	embrane potential achieves a maximum intracellular charge of polarization.
0011118 2 0	
a.	-70 mV
b.	-80mV
c.	30 mV
d.	60 mV
e.	80 mV
18. In Rep	olarization, the intracellular membrane becomes slightly more
-	positive
	negative
υ.	110 5 110 110

- 19. Repolarization is caused by
 - a. Na⁺ Channels being OPEN, and K⁺ Channels being CLOSED
 - b. Na⁺ Channels being CLOSED, and K⁺ Channels being OPEN
 - c. Na⁺ Channels being OPEN, and K⁺ Channels being OPEN
 - d. Na⁺ Channels being CLOSED, and K⁺ Channels being CLOSED
- 20. The membrane potential achieves a minimum intracellular charge of _____ during Repolarization.
 - a. -70 mV
 - b. -80mV
 - c. 30 mV
 - d. 60 mV
 - e. 80 mV

Use the graph below to answer the following questions.

- 21. This represents
 - a. Depolarization
 - b. Hyperpolarization
 - c. Resting Membrane Potential
 - d. Repolarization
- 22. This represents
 - a. Depolarization
 - b. Hyperpolarization
 - c. Resting Membrane Potential
 - d. Repolarization

- 23. This represents
 - a. Depolarization
 - b. Hyperpolarization
 - c. Resting Membrane Potential
 - d. Repolarization
- 24. This represents
 - a. Depolarization
 - b. Hyperpolarization
 - c. Resting Membrane Potential
 - d. Repolarization

ANSWER KEY

- 1. a
- 2. d
- 3. b
- 4. a
- 5. e
- 6. c
- 7. c
- 8. b
- 9. b
- 10. c
- 11. d
- 12. b
- 13. b
- 14. b
- 15. a
- 16. a
- 17. c
- 18. b
- 19. b
- 20. a
- 21. c
- 22. a
- 23. d
- 24. b