Electrochemistry

"Redox" or oxidation-reduction reactions involve a change in the oxidation state of the chemical species involved in a chemical reaction. (Review handout on oxidation numbers.)

Example:

 $\begin{array}{rcl} Cu^{2+}(aq) + 2e^{-} & -> & Cu(s) & \text{gain of electron}(s) = \text{reduction} \\ & Zn(s) & -> & Zn^{2+}(aq) + 2e^{-} & \text{loss of electron}(s) = \text{oxidation} \\ \hline \hline & Zn(s) + & Cu^{2+}(aq) & -> & Zn^{2+}(aq) + & Cu(s) & \text{overall reaction} \end{array}$

The two **half-cell** reactions combine to yield the overall reaction. The number of electrons gained in the reduction half-cell reaction must equal the number of electrons lost in the oxidation half-cell reaction.

The reactant which has undergone **reduction** caused the oxidation of another species and thus is termed the **oxidizing agent**.

The reactant which has undergone **oxidation** caused the reduction of another species and thus is termed the **reducing agent**.

Standard electrode potential (**E**^o**half-cell**) is potential associated with a given half-cell reaction when all components are in standard states. The half-cell reaction is written as a reduction. The standard potential is also termed reduction potential. The chemical species closer to the top of the chart is more easily reduced, thus, a stronger oxidizing agent. The chemical species closer to the bottom of the chart is more easily oxidixed, thus, a stronger reducing agent.

Predicting Cell Reactions

- Is the reaction $I_2(s) + Cu(s) \rightarrow Cu^2 + (aq) + 2I^-(aq)$ spontaneous?
- (1) Determine the reduction potential values for the two half-cell reactions.

$$2e^{-} + I_2(s) \longrightarrow 2I^{-}(aq)$$

 $2e^{-} + Cu^{2+}(aq) \longrightarrow Cu(s)$
 $E^{o}_{red} = +0.54V$
 $E^{o}_{red} = +0.34V$

(2) Write oxidation and reduction half-cell reactions. Note the sign change for the oxidation half-cell reaction.

$$2e^{-} + I_{2}(s) \rightarrow 2I^{-}(aq) \qquad E^{o}red = +0.54V$$

$$Cu(s) \rightarrow Cu^{2} + (aq) + 2e^{-} \qquad E^{o}oxid = -0.34V$$

$$I_2(s) + Cu(s) \rightarrow Cu^{2+}(aq) + 2I^{-}(aq)$$
 $E^{o}cell = +0.20V$

So this reaction is spontaneous, E^ocell has a positive value

Type of Cell	Voltaic Cell	Electrolytic Cell
Energy &	Energy is released from	Energy is absorbed to drive
Reaction Type	spontaneous redox reaction	nonspontaneous redox
		reaction
System & Surroundings	System does work on load/	Surroundings (power supply)
	surroundings	does work on system (cell)
Diagram	Anode Load Cathode Energy (-) electrolyte	Anode (+) electrolyte
Oxidation = loss of e ⁻ Oxidation half-cell	occurs at anode X->X ⁺ + e ⁻	occurs at anode $A^- \rightarrow A + e^-$
Reduction = gain of e^-	occurs at cathode	occurs at cathode
Reduction half-cell	$e^{-}+Y^{+} \to Y$	$e^{-}+B^{+}->B$
Overall Reaction	$X + Y^+ \to X^+ + Y$	$A^{-} + B^{+} \rightarrow A + B$
	$\Delta G < 0$	$\Delta G > 0$
Electron flow	anode to cathode	anode to cathode
Charge on anode	negative	positive
Charge on cathode	positive	negative
Anions migrate	toward anode	toward anode
Cathode migrate	toward cathode	toward cathode
Requirements	need electrolyte	need electrolyte
TT	(sait bridge, porous filter)	
Uses	fuel cells, batteries	plating, purifying active metals

Comparison of Voltaic versus Electrolytic Cells