Titration Calculations

Strong Acid/Strong Base Calculations

- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine pH from amount of strong acid/base that is in excess.

Note: At stoichiometry point of equal acid and base, pH = 7.

Example:

What is pH after 0.0 mL, 10.0mL, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12M HCl solution with 0.15M NaOH solution?

For strong acid/base titration, perform stoichiometry calculation first; then calculation resulting concentration with total volume; finally, calculate pH directly.

(A) 0.0 mL base: Solution is 0.12M HCl pH = $-\log[H+] = -\log(0.12) = 0.92$

(B) 10.0mL added base:

$$[HC1] = 0.0015 \text{ mol}/0.0350L = 0.043 \text{ M}$$

Therefore since strong acid: $[H^{\dagger}] = 0.043 \text{ M}$ so $pH = -\log(0.043) = 1.37$

(C) At Equivalence Point:

Volume of base added = (0.0030 mol HCl)(1 mol NaOH/1mol HCl)(1 L/0.15 mol NaOH)= 0.020 L = 20. mL added base

Since NaCl does not hydrolyze water, pH is neutral 7.00.

(D) 50.0mL added base:

$$[NaOH] = 0.0045 \text{ mol}/0.0750L = 0.060 \text{ M}$$

Therefore since strong base left: $[OH^-] = 0.060 \text{ M}$ so $pOH = -\log(0.060) = 1.22$

Weak Acid/Strong Base Calculations

What is pH after 0.0 mL, 10.0mL, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12M HF solution with 0.15M NaOH solution? $K_a = 6.8 \times 10^{-4}$

- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.
- (3) Use appropriate equilibrium reaction and ICE chart to determine pH.

Stoichiometric Reaction:

$$HF(aq)$$
 + $NaOH(aq)$ -> $H_2O(1)$ + $NaF(aq)$

Equilibrium Reaction:

$$HF(aq)$$
 + $H_2O(1)$ -> $H_3O^+(aq)$ + $F^-(aq)$

(A) Addition of 0.0 mL of base:

Only weak acid present.

	HF (aq)	+	H_2O	\Leftrightarrow	H_3O^+ (aq)	+	F ⁻ (aq)
I							
С			·				•
Е			,				

- (B) What is pH after 10.0mL of 0.15M NaOH solution has been added to 25.0 mL of 0.12M HF solution? $K_a = 6.8 \times 10^{-4}$
- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.
- (3) Use appropriate equilibrium reaction and ICE chart to determine pH.
- (1) Stoichiometric Reaction:

(2) New concentrations:

$$[HF] =$$

$$[F^-] =$$

(3) Equilibrium Reaction:

	HF (aq)	+	H ₂ O <	\rightarrow H ₃ O ⁺ (aq)	+	F ⁻ (aq)
I						
С			•	•		
Е			•			

(C) What is pH at equivalence point?

First need to determine volume at equivalence point.

- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.
- (3) Use appropriate equilibrium reaction and ICE chart to determine pH.

(1) Stoichiometric Reaction:

(2) New concentrations:

$$[HF] =$$

[F⁻] =
$$K_b = \frac{1x10^{-14}}{6.8x10^{-4}} = 1.5x10^{-11}$$

(3) Equilibrium Reaction:

Only conjugate base now left. So must use equilibrium reaction for conjugate base and calculate K_b .

	F ⁻ (aq)	+	H ₂ O	\Leftrightarrow	OH ⁻ (aq)	+	HF (aq)
I			·				
С			•			•	•
Е			•				•

- (D) What is pH after 50.0mL of 0.15M NaOH solution has been added to 25.0 mL of 0.12M HF solution? $K_a = 6.8 \times 10^{-4}$
- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.
- (3) Use appropriate equilibrium reaction and ICE chart to determine pH.
- (1) Stoichiometric Reaction:

(2) New concentrations:

$$[OH^{-}] =$$

[F⁻] =
$$K_b = \frac{1 \times 10^{-14}}{6.8 \times 10^{-4}} = 1.5 \times 10^{-11}$$

(3) Equilibrium Reaction:

	F ⁻ (aq)	+	H ₂ O	\Leftrightarrow	OH ⁻ (aq)	+	HF (aq)
I			·				•
С			•			•	•
Е						•	